cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033537 a(n) = n*(2*n+5).

Original entry on oeis.org

0, 7, 18, 33, 52, 75, 102, 133, 168, 207, 250, 297, 348, 403, 462, 525, 592, 663, 738, 817, 900, 987, 1078, 1173, 1272, 1375, 1482, 1593, 1708, 1827, 1950, 2077, 2208, 2343, 2482, 2625, 2772, 2923, 3078, 3237, 3400, 3567, 3738, 3913, 4092, 4275, 4462, 4653, 4848, 5047, 5250, 5457, 5668
Offset: 0

Views

Author

Keywords

Comments

Permutations avoiding 12-3 that contain the pattern 32-1 exactly once.
a(n) = A014107(n) + 8*n^2; A100035(a(n)) = 3 for n>1. - Reinhard Zumkeller, Oct 31 2004
If Y is a 3-subset of an (2n+1)-set X then, for n>=1, a(n-1) is the number of (2n-1)-subsets of X having at least two elements in common with Y. - Milan Janjic, Dec 16 2007

Crossrefs

Programs

Formula

a(n) = a(n-1) + 4*n + 3 (with a(0)=0). - Vincenzo Librandi, Nov 17 2010
From L. Edson Jeffery, Oct 14 2012: (Start)
G.f.: x*(7-3*x)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), n>=3, a(0)=0, a(1)=7, a(2)=18. (End)
E.g.f.: x*(7 + 2*x)*exp(x). - G. C. Greubel, Jul 15 2017
From Amiram Eldar, Feb 06 2022: (Start)
Sum_{n>=1} 1/a(n) = 46/75 - 2*log(2)/5.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/10 + log(2)/5 - 26/75. (End)