cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 24 results. Next

A014107 a(n) = n*(2*n-3).

Original entry on oeis.org

0, -1, 2, 9, 20, 35, 54, 77, 104, 135, 170, 209, 252, 299, 350, 405, 464, 527, 594, 665, 740, 819, 902, 989, 1080, 1175, 1274, 1377, 1484, 1595, 1710, 1829, 1952, 2079, 2210, 2345, 2484, 2627, 2774, 2925, 3080, 3239, 3402, 3569, 3740, 3915, 4094, 4277
Offset: 0

Views

Author

Keywords

Comments

Positive terms give a bisection of A000096. - Omar E. Pol, Dec 16 2016

Crossrefs

Programs

Formula

a(n) = A100345(n, n - 3) for n > 2.
a(n) = A033537(n) - 8*n^2; A100035(a(n)) = 2 for n > 1. - Reinhard Zumkeller, Oct 31 2004
a(n) = A014106(-n) for all n in Z. - Michael Somos, Nov 06 2005
From Michael Somos, Nov 06 2005: (Start)
G.f.: x*(-1 + 5*x)/(1 - x)^3.
E.g.f: x*(-1 + 2*x)*exp(x). (End)
a(n) = A097070(n)/A000108(n - 2), n >= 2. - Philippe Deléham, Apr 12 2007
a(n) = 2*a(n-1) - a(n-2) + 4, n > 1; a(0) = 0, a(1) = -1, a(2) = 2. - Zerinvary Lajos, Feb 18 2008
a(n) = a(n-1) + 4*n - 5 with a(0) = 0. - Vincenzo Librandi, Nov 20 2010
a(n) = (2*n-1)*(n-1) - 1. Also, with an initial offset of -1, a(n) = (2*n-1)*(n+1) = 2*n^2 + n - 1. - Alonso del Arte, Dec 15 2012
(a(n) + 1)^2 + (a(n) + 2)^2 + ... + (a(n) + n)^2 = (a(n) + n + 1)^2 + (a(n) + n + 2)^2 + ... + (a(n) + 2n - 1)^2 starting with a(1) = -1. - Jeffreylee R. Snow, Sep 17 2013
a(n) = A014105(n-1) - 1 for all n in Z. - Michael Somos, Nov 23 2021
From Amiram Eldar, Feb 20 2022: (Start)
Sum_{n>=1} 1/a(n) = -2*(1 - log(2))/3.
Sum_{n>=1} (-1)^n/a(n) = Pi/6 + log(2)/3 + 2/3. (End)
For n > 0, A002378(a(n)) = A000384(n-1)*A000384(n). - Charlie Marion, May 21 2023

A100037 Positions of occurrences of the natural numbers as a second subsequence in A100035.

Original entry on oeis.org

4, 9, 18, 31, 48, 69, 94, 123, 156, 193, 234, 279, 328, 381, 438, 499, 564, 633, 706, 783, 864, 949, 1038, 1131, 1228, 1329, 1434, 1543, 1656, 1773, 1894, 2019, 2148, 2281, 2418, 2559, 2704, 2853, 3006, 3163, 3324, 3489, 3658, 3831, 4008, 4189, 4374, 4563
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 31 2004

Keywords

Comments

For n > 1, A100035(a(n)) = n and A100035(m) != n for a(n-1) <= m < a(n);
A100036(n) < a(n) < A100038(n) < A100039(n).

Examples

			First terms (10 = A, 11 = B, 12 = C) of A100035(a(n)):
...1....2........3............4................5......
1231435425165764736271879869584938291A9BA8B7A6B5A4B3A2B;
a(1) = A084849(2) = 4, A100035(4) = 1;
a(2) = A014107(2) = 9, A100035(9) = 2;
a(3) = A033537(3) = 18, A100035(18) = 3;
a(4) = A100040(4) = 31, A100035(31) = 4;
a(5) = A100041(5) = 48, A100035(48) = 5.
		

Crossrefs

Formula

a(n) = 2*n^2 - n + 3 (conjectured). - Ralf Stephan, May 15 2007

A100038 Positions of occurrences of the natural numbers as third subsequence in A100035.

Original entry on oeis.org

11, 20, 33, 50, 71, 96, 125, 158, 195, 236, 281, 330, 383, 440, 501, 566, 635, 708, 785, 866, 951, 1040, 1133, 1230, 1331, 1436, 1545, 1658, 1775, 1896, 2021, 2150, 2283, 2420, 2561, 2706, 2855, 3008, 3165, 3326, 3491, 3660, 3833, 4010, 4191, 4376, 4565
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 31 2004

Keywords

Comments

n>1: A100035(a(n))=n and A100035(m)<>n for a(n-1)<=m
A100036(n) < A100037(n) < a(n) < A100039(n).

Examples

			First terms (10=A,11=B,12=C) of A100035(a(n)):
..........1........2............3................4...
1231435425165764736271879869584938291A9BA8B7A6B5A4B3A2B1;
a(1) = A084849(3) = 11, A100035(11) = 1;
a(2) = A014107(3) = 20, A100035(20) = 2;
a(3) = A033537(4) = 33, A100035(33) = 3;
a(4) = A100040(5) = 50, A100035(50) = 4;
a(5) = A100041(6) = 71, A100035(71) = 5.
		

Crossrefs

Cf. A100037.

Formula

a(n) = 2*n^2 + 3*n + 6 (conjectured). - Ralf Stephan, May 15 2007

A100039 Positions of occurrences of the natural numbers as fourth subsequence in A100035.

Original entry on oeis.org

22, 35, 52, 73, 98, 127, 160, 197, 238, 283, 332, 385, 442, 503, 568, 637, 710, 787, 868, 953, 1042, 1135, 1232, 1333, 1438, 1547, 1660, 1777, 1898, 2023, 2152, 2285, 2422, 2563, 2708, 2857, 3010, 3167, 3328, 3493, 3662, 3835, 4012, 4193, 4378, 4567, 4760
Offset: 1

Author

Reinhard Zumkeller, Oct 31 2004

Keywords

Comments

n>1: A100035(a(n))=n and A100035(m)<>n for a(n-1)<=m
A100036(n) < A100037(n) < A100038(n) < a(n).

Examples

			First terms (10=A,11=B,12=C) of A100035(a(n)):
.....................1............2................3....
1231435425165764736271879869584938291A9BA8B7A6B5A4B3A2B1;
a(1) = A084849(4) = 22, A100035(22) = 1;
a(2) = A014107(4) = 35, A100035(35) = 2;
a(3) = A033537(5) = 52, A100035(52) = 3;
a(4) = A100040(6) = 73, A100035(73) = 4;
a(5) = A100041(7) = 98, A100035(98) = 5.
		

Formula

2n^2 + 7n + 13 (conjectured). - Ralf Stephan, May 15 2007

A100035 a(n+1) occurs not earlier as a neighbor of terms = a(n): either it is the greatest number < a(n) or, if no such number exists, the smallest number > a(n); a(1) = 1.

Original entry on oeis.org

1, 2, 3, 1, 4, 3, 5, 4, 2, 5, 1, 6, 5, 7, 6, 4, 7, 3, 6, 2, 7, 1, 8, 7, 9, 8, 6, 9, 5, 8, 4, 9, 3, 8, 2, 9, 1, 10, 9, 11, 10, 8, 11, 7, 10, 6, 11, 5, 10, 4, 11, 3, 10, 2, 11, 1, 12, 11, 13, 12, 10, 13, 9, 12, 8, 13, 7, 12, 6, 13, 5, 12, 4, 13, 3, 12, 2, 13, 1, 14, 13, 15, 14, 12, 15, 11, 14, 10
Offset: 1

Author

Reinhard Zumkeller, Oct 31 2004

Keywords

Comments

The natural numbers (A000027) occur infinitely many times as disjoint subsequences, see the example below and A100036, A100037, A100038 and A100039: exactly one k exists for all x < y such that a(k) = x and (a(k-1) = y or a(k+1) = y).
a(2*k^2 + k + 1) = a(A084849(k)) = 1 for k >= 0;
a(2*k^2 - 3*k) = a(A014107(k)) = 2 for k > 1;
a(2*k^2 + 5*k) = a(A033537(k)) = 3 for k > 1;
a(2*k^2 + k - 5) = a(A100040(k)) = 4 for k > 2;
a(2*k^2 + k - 7) = a(A100041(k)) = 5 for k > 3.

Examples

			First terms (10 = A, 11 = B, 12 = C) and some subsequences = A000027:
1231435425165764736271879869584938291A9BA8B7A6B5A4B3A2B1CBD
123.4.5....6.7........8.9............A.B................C.D.
...1....2........3............4................5..........
..........1........2............3................4......
.....................1............2................3....
		

A100036 a(n) = smallest m such that A100035(m) = n.

Original entry on oeis.org

1, 2, 3, 5, 7, 12, 14, 23, 25, 38, 40, 57, 59, 80, 82, 107, 109, 138, 140, 173, 175, 212, 214, 255, 257, 302, 304, 353, 355, 408, 410, 467, 469, 530, 532, 597, 599, 668, 670, 743, 745, 822, 824, 905, 907, 992, 994, 1083, 1085, 1178, 1180, 1277, 1279, 1380
Offset: 1

Author

Reinhard Zumkeller, Oct 31 2004

Keywords

Comments

Smallest positions of occurrences of the natural numbers as subsequence in A100035;
A100035(a(n)) = n and A100035(m) <> n for m < a(n);
a(n) < A100037(n) < A100038(n) < A100039(n).

Examples

			First terms (10=A,11=B,12=C) of A100035(a(n)):
123.4.5....6.7........8.9............A.B................C.
1231435425165764736271879869584938291A9BA8B7A6B5A4B3A2B1CBD;
a(1) = A084849(1) = 1, A100035(1) = 1;
a(2) = A014107(1) = 2, A100035(2) = 2;
a(3) = A033537(1) = 3, A100035(3) = 3;
a(4) = A100040(1) = 5, A100035(5) = 4;
a(5) = A100041(1) = 7, A100035(7) = 5.
		

Formula

Conjecture: a(n) = partial sums of sequence [1,1,1,2,2,5,2,9,2,13,2,17,2,21,2,25,2,29,2,33,...2,n/2-7,2,...]. In other words, a(n) consists of the numbers 1,2,3 and the sequences A096376 and A096376+2 interspersed. - Ralf Stephan, May 15 2007

A139579 a(n) = 2*n^2 + 15*n.

Original entry on oeis.org

0, 17, 38, 63, 92, 125, 162, 203, 248, 297, 350, 407, 468, 533, 602, 675, 752, 833, 918, 1007, 1100, 1197, 1298, 1403, 1512, 1625, 1742, 1863, 1988, 2117, 2250, 2387, 2528, 2673, 2822, 2975, 3132, 3293, 3458, 3627, 3800, 3977, 4158, 4343, 4532, 4725, 4922, 5123, 5328, 5537
Offset: 0

Author

Omar E. Pol, May 19 2008

Keywords

Programs

Formula

a(n) = a(n-1) + 4*n + 13; a(0) = 0. - Vincenzo Librandi, Nov 24 2010
From Stefano Spezia, Oct 21 2023: (Start)
O.g.f.: x*(17 - 13*x)/(1 - x)^3.
E.g.f.: exp(x)*x*(17 + 2*x). (End)
From Amiram Eldar, Nov 10 2023: (Start)
Sum_{n>=1} 1/a(n) = 182144/675675 - 2*log(2)/15.
Sum_{n>=1} (-1)^(n+1)/a(n) = log(2)/15 - Pi/30 + 67952/675675. (End)

A139576 a(n) = n*(2*n + 9).

Original entry on oeis.org

0, 11, 26, 45, 68, 95, 126, 161, 200, 243, 290, 341, 396, 455, 518, 585, 656, 731, 810, 893, 980, 1071, 1166, 1265, 1368, 1475, 1586, 1701, 1820, 1943, 2070, 2201, 2336, 2475, 2618, 2765, 2916, 3071, 3230, 3393, 3560, 3731, 3906
Offset: 0

Author

Omar E. Pol, May 19 2008

Keywords

Programs

Formula

a(n) = 2*n^2 + 9*n.
a(n) = a(n-1) + 4*n + 7 (with a(0)=0). - Vincenzo Librandi, Nov 24 2010
From Elmo R. Oliveira, Nov 29 2024: (Start)
G.f.: x*(11 - 7*x)/(1-x)^3.
E.g.f.: exp(x)*x*(11 + 2*x).
a(n) = A277979(n)/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A139577 a(n) = n*(2*n + 11).

Original entry on oeis.org

0, 13, 30, 51, 76, 105, 138, 175, 216, 261, 310, 363, 420, 481, 546, 615, 688, 765, 846, 931, 1020, 1113, 1210, 1311, 1416, 1525, 1638, 1755, 1876, 2001, 2130, 2263, 2400, 2541, 2686, 2835, 2988, 3145, 3306, 3471, 3640, 3813, 3990
Offset: 0

Author

Omar E. Pol, May 19 2008

Keywords

Programs

Formula

a(n) = 2*n^2 + 11*n.
a(n) = a(n-1) + 4*n + 9 (with a(0)=0). - Vincenzo Librandi, Nov 24 2010
From Elmo R. Oliveira, Nov 29 2024: (Start)
G.f.: x*(13 - 9*x)/(1-x)^3.
E.g.f.: exp(x)*x*(13 + 2*x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A139578 a(n) = n*(2*n + 13).

Original entry on oeis.org

0, 15, 34, 57, 84, 115, 150, 189, 232, 279, 330, 385, 444, 507, 574, 645, 720, 799, 882, 969, 1060, 1155, 1254, 1357, 1464, 1575, 1690, 1809, 1932, 2059, 2190, 2325, 2464, 2607, 2754, 2905, 3060, 3219, 3382, 3549, 3720, 3895, 4074, 4257, 4444, 4635, 4830, 5029
Offset: 0

Author

Omar E. Pol, May 19 2008

Keywords

Programs

Formula

a(n) = 2*n^2 + 13*n.
a(n) = a(n-1) + 4*n + 11 (with a(0)=0). - Vincenzo Librandi, Nov 24 2010
From Elmo R. Oliveira, Nov 29 2024: (Start)
G.f.: x*(15 - 11*x)/(1 - x)^3.
E.g.f.: exp(x)*x*(15 + 2*x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
Showing 1-10 of 24 results. Next