cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A084849 a(n) = 1 + n + 2*n^2.

Original entry on oeis.org

1, 4, 11, 22, 37, 56, 79, 106, 137, 172, 211, 254, 301, 352, 407, 466, 529, 596, 667, 742, 821, 904, 991, 1082, 1177, 1276, 1379, 1486, 1597, 1712, 1831, 1954, 2081, 2212, 2347, 2486, 2629, 2776, 2927, 3082, 3241, 3404, 3571, 3742, 3917, 4096, 4279, 4466
Offset: 0

Views

Author

Paul Barry, Jun 09 2003

Keywords

Comments

Equals (1, 2, 3, ...) convolved with (1, 2, 4, 4, 4, ...). a(3) = 22 = (1, 2, 3, 4) dot (4, 4, 2, 1) = (4 + 8 + 6 + 4). - Gary W. Adamson, May 01 2009
a(n) is also the number of ways to place 2 nonattacking bishops on a 2 X (n+1) board. - Vaclav Kotesovec, Jan 29 2010
Partial sums are A174723. - Wesley Ivan Hurt, Apr 16 2016
Also the number of irredundant sets in the n-cocktail party graph. - Eric W. Weisstein, Aug 09 2017

Crossrefs

Programs

Formula

a(n) = A058331(n) + A000027(n).
G.f.: (1 + x + 2*x^2)/(1 - x)^3.
a(n) = A014105(n) + 1; A100035(a(n)) = 1. - Reinhard Zumkeller, Oct 31 2004
a(n) = ceiling((2*n + 1)^2/2) - n = A001844(n) - n. - Paul Barry, Jul 16 2006
From Gary W. Adamson, Oct 07 2007: (Start)
Row sums of triangle A131901.
(a(n): n >= 0) is the binomial transform of (1, 3, 4, 0, 0, 0, ...). (End)
Equals A134082 * [1,2,3,...]. -
a(n) = (1 + A000217(2*n-1) + A000217(2*n+1))/2. - Enrique Pérez Herrero, Apr 02 2010
a(n) = (A177342(n+1) - A177342(n))/2, with n > 0. - Bruno Berselli, May 19 2010
a(n) - 3*a(n-1) + 3*a(n-2) - a(n-3) = 0, with n > 2. - Bruno Berselli, May 24 2010
a(n) = 4*n + a(n-1) - 1 (with a(0) = 1). - Vincenzo Librandi, Aug 08 2010
With an offset of 1, the polynomial a(t-1) = 2*t^2 - 3*t + 2 is the Alexander polynomial (with negative powers cleared) of the 3-twist knot. The associated Seifert matrix S is [[-1,-1], [0,-2]]. a(n-1) = det(transpose(S) - n*S). Cf. A060884. - Peter Bala, Mar 14 2012
E.g.f.: (1 + 3*x + 2*x^2)*exp(x). - Ilya Gutkovskiy, Apr 16 2016

A014107 a(n) = n*(2*n-3).

Original entry on oeis.org

0, -1, 2, 9, 20, 35, 54, 77, 104, 135, 170, 209, 252, 299, 350, 405, 464, 527, 594, 665, 740, 819, 902, 989, 1080, 1175, 1274, 1377, 1484, 1595, 1710, 1829, 1952, 2079, 2210, 2345, 2484, 2627, 2774, 2925, 3080, 3239, 3402, 3569, 3740, 3915, 4094, 4277
Offset: 0

Views

Author

Keywords

Comments

Positive terms give a bisection of A000096. - Omar E. Pol, Dec 16 2016

Crossrefs

Programs

Formula

a(n) = A100345(n, n - 3) for n > 2.
a(n) = A033537(n) - 8*n^2; A100035(a(n)) = 2 for n > 1. - Reinhard Zumkeller, Oct 31 2004
a(n) = A014106(-n) for all n in Z. - Michael Somos, Nov 06 2005
From Michael Somos, Nov 06 2005: (Start)
G.f.: x*(-1 + 5*x)/(1 - x)^3.
E.g.f: x*(-1 + 2*x)*exp(x). (End)
a(n) = A097070(n)/A000108(n - 2), n >= 2. - Philippe Deléham, Apr 12 2007
a(n) = 2*a(n-1) - a(n-2) + 4, n > 1; a(0) = 0, a(1) = -1, a(2) = 2. - Zerinvary Lajos, Feb 18 2008
a(n) = a(n-1) + 4*n - 5 with a(0) = 0. - Vincenzo Librandi, Nov 20 2010
a(n) = (2*n-1)*(n-1) - 1. Also, with an initial offset of -1, a(n) = (2*n-1)*(n+1) = 2*n^2 + n - 1. - Alonso del Arte, Dec 15 2012
(a(n) + 1)^2 + (a(n) + 2)^2 + ... + (a(n) + n)^2 = (a(n) + n + 1)^2 + (a(n) + n + 2)^2 + ... + (a(n) + 2n - 1)^2 starting with a(1) = -1. - Jeffreylee R. Snow, Sep 17 2013
a(n) = A014105(n-1) - 1 for all n in Z. - Michael Somos, Nov 23 2021
From Amiram Eldar, Feb 20 2022: (Start)
Sum_{n>=1} 1/a(n) = -2*(1 - log(2))/3.
Sum_{n>=1} (-1)^n/a(n) = Pi/6 + log(2)/3 + 2/3. (End)
For n > 0, A002378(a(n)) = A000384(n-1)*A000384(n). - Charlie Marion, May 21 2023

A033537 a(n) = n*(2*n+5).

Original entry on oeis.org

0, 7, 18, 33, 52, 75, 102, 133, 168, 207, 250, 297, 348, 403, 462, 525, 592, 663, 738, 817, 900, 987, 1078, 1173, 1272, 1375, 1482, 1593, 1708, 1827, 1950, 2077, 2208, 2343, 2482, 2625, 2772, 2923, 3078, 3237, 3400, 3567, 3738, 3913, 4092, 4275, 4462, 4653, 4848, 5047, 5250, 5457, 5668
Offset: 0

Views

Author

Keywords

Comments

Permutations avoiding 12-3 that contain the pattern 32-1 exactly once.
a(n) = A014107(n) + 8*n^2; A100035(a(n)) = 3 for n>1. - Reinhard Zumkeller, Oct 31 2004
If Y is a 3-subset of an (2n+1)-set X then, for n>=1, a(n-1) is the number of (2n-1)-subsets of X having at least two elements in common with Y. - Milan Janjic, Dec 16 2007

Crossrefs

Programs

Formula

a(n) = a(n-1) + 4*n + 3 (with a(0)=0). - Vincenzo Librandi, Nov 17 2010
From L. Edson Jeffery, Oct 14 2012: (Start)
G.f.: x*(7-3*x)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), n>=3, a(0)=0, a(1)=7, a(2)=18. (End)
E.g.f.: x*(7 + 2*x)*exp(x). - G. C. Greubel, Jul 15 2017
From Amiram Eldar, Feb 06 2022: (Start)
Sum_{n>=1} 1/a(n) = 46/75 - 2*log(2)/5.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/10 + log(2)/5 - 26/75. (End)

A100037 Positions of occurrences of the natural numbers as a second subsequence in A100035.

Original entry on oeis.org

4, 9, 18, 31, 48, 69, 94, 123, 156, 193, 234, 279, 328, 381, 438, 499, 564, 633, 706, 783, 864, 949, 1038, 1131, 1228, 1329, 1434, 1543, 1656, 1773, 1894, 2019, 2148, 2281, 2418, 2559, 2704, 2853, 3006, 3163, 3324, 3489, 3658, 3831, 4008, 4189, 4374, 4563
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 31 2004

Keywords

Comments

For n > 1, A100035(a(n)) = n and A100035(m) != n for a(n-1) <= m < a(n);
A100036(n) < a(n) < A100038(n) < A100039(n).

Examples

			First terms (10 = A, 11 = B, 12 = C) of A100035(a(n)):
...1....2........3............4................5......
1231435425165764736271879869584938291A9BA8B7A6B5A4B3A2B;
a(1) = A084849(2) = 4, A100035(4) = 1;
a(2) = A014107(2) = 9, A100035(9) = 2;
a(3) = A033537(3) = 18, A100035(18) = 3;
a(4) = A100040(4) = 31, A100035(31) = 4;
a(5) = A100041(5) = 48, A100035(48) = 5.
		

Crossrefs

Formula

a(n) = 2*n^2 - n + 3 (conjectured). - Ralf Stephan, May 15 2007

A100038 Positions of occurrences of the natural numbers as third subsequence in A100035.

Original entry on oeis.org

11, 20, 33, 50, 71, 96, 125, 158, 195, 236, 281, 330, 383, 440, 501, 566, 635, 708, 785, 866, 951, 1040, 1133, 1230, 1331, 1436, 1545, 1658, 1775, 1896, 2021, 2150, 2283, 2420, 2561, 2706, 2855, 3008, 3165, 3326, 3491, 3660, 3833, 4010, 4191, 4376, 4565
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 31 2004

Keywords

Comments

n>1: A100035(a(n))=n and A100035(m)<>n for a(n-1)<=m
A100036(n) < A100037(n) < a(n) < A100039(n).

Examples

			First terms (10=A,11=B,12=C) of A100035(a(n)):
..........1........2............3................4...
1231435425165764736271879869584938291A9BA8B7A6B5A4B3A2B1;
a(1) = A084849(3) = 11, A100035(11) = 1;
a(2) = A014107(3) = 20, A100035(20) = 2;
a(3) = A033537(4) = 33, A100035(33) = 3;
a(4) = A100040(5) = 50, A100035(50) = 4;
a(5) = A100041(6) = 71, A100035(71) = 5.
		

Crossrefs

Cf. A100037.

Formula

a(n) = 2*n^2 + 3*n + 6 (conjectured). - Ralf Stephan, May 15 2007

A100039 Positions of occurrences of the natural numbers as fourth subsequence in A100035.

Original entry on oeis.org

22, 35, 52, 73, 98, 127, 160, 197, 238, 283, 332, 385, 442, 503, 568, 637, 710, 787, 868, 953, 1042, 1135, 1232, 1333, 1438, 1547, 1660, 1777, 1898, 2023, 2152, 2285, 2422, 2563, 2708, 2857, 3010, 3167, 3328, 3493, 3662, 3835, 4012, 4193, 4378, 4567, 4760
Offset: 1

Author

Reinhard Zumkeller, Oct 31 2004

Keywords

Comments

n>1: A100035(a(n))=n and A100035(m)<>n for a(n-1)<=m
A100036(n) < A100037(n) < A100038(n) < a(n).

Examples

			First terms (10=A,11=B,12=C) of A100035(a(n)):
.....................1............2................3....
1231435425165764736271879869584938291A9BA8B7A6B5A4B3A2B1;
a(1) = A084849(4) = 22, A100035(22) = 1;
a(2) = A014107(4) = 35, A100035(35) = 2;
a(3) = A033537(5) = 52, A100035(52) = 3;
a(4) = A100040(6) = 73, A100035(73) = 4;
a(5) = A100041(7) = 98, A100035(98) = 5.
		

Formula

2n^2 + 7n + 13 (conjectured). - Ralf Stephan, May 15 2007

A100040 a(n) = 2*n^2 + n - 5.

Original entry on oeis.org

-5, -2, 5, 16, 31, 50, 73, 100, 131, 166, 205, 248, 295, 346, 401, 460, 523, 590, 661, 736, 815, 898, 985, 1076, 1171, 1270, 1373, 1480, 1591, 1706, 1825, 1948, 2075, 2206, 2341, 2480, 2623, 2770, 2921, 3076, 3235, 3398, 3565, 3736, 3911, 4090, 4273
Offset: 0

Author

Reinhard Zumkeller, Oct 31 2004

Keywords

Comments

a(n) is the result of taking five consecutive numbers starting at n-2, then adding the products of the first and the last and of the second with the fourth and finally adding the middle term. That is, a(n) = (n^2-4) + (n^2-1) + n. - J. M. Bergot, Mar 06 2018

Crossrefs

Programs

Formula

A100035(a(n)) = 4 for n>3;
a(n) = A014105(n) - 5 = A084849(n) - 6 = A100041(n) + 2.
a(n) = 2*a(n-1)-a(n-2)+4; a(0)=-5, a(1)=-2. - Vincenzo Librandi, Dec 26 2010
G.f.: (-5 + 13*x - 4*x^2)/(1 - x)^3. - Arkadiusz Wesolowski, Dec 25 2011
E.g.f.: (2*x^2 + 3*x - 5)*exp(x). - G. C. Greubel, Jul 15 2017

A100041 a(n) = 2*n^2 + n - 7.

Original entry on oeis.org

-7, -4, 3, 14, 29, 48, 71, 98, 129, 164, 203, 246, 293, 344, 399, 458, 521, 588, 659, 734, 813, 896, 983, 1074, 1169, 1268, 1371, 1478, 1589, 1704, 1823, 1946, 2073, 2204, 2339, 2478, 2621, 2768, 2919, 3074, 3233, 3396, 3563, 3734, 3909, 4088, 4271, 4458, 4649
Offset: 0

Author

Reinhard Zumkeller, Oct 31 2004

Keywords

Crossrefs

Programs

Formula

A100035(a(n)) = 5 for n>3.
a(n) = A014105(n) - 7 = A084849(n) - 8 = A100040(n) - 2.
From G. C. Greubel, Jul 15 2017: (Start)
G.f.: (7 - 17 x + 6 x^2)/(-1 + x)^3.
E.g.f.: (2*x^2 + 3*x - 7)*exp(x). (End)

A100035 a(n+1) occurs not earlier as a neighbor of terms = a(n): either it is the greatest number < a(n) or, if no such number exists, the smallest number > a(n); a(1) = 1.

Original entry on oeis.org

1, 2, 3, 1, 4, 3, 5, 4, 2, 5, 1, 6, 5, 7, 6, 4, 7, 3, 6, 2, 7, 1, 8, 7, 9, 8, 6, 9, 5, 8, 4, 9, 3, 8, 2, 9, 1, 10, 9, 11, 10, 8, 11, 7, 10, 6, 11, 5, 10, 4, 11, 3, 10, 2, 11, 1, 12, 11, 13, 12, 10, 13, 9, 12, 8, 13, 7, 12, 6, 13, 5, 12, 4, 13, 3, 12, 2, 13, 1, 14, 13, 15, 14, 12, 15, 11, 14, 10
Offset: 1

Author

Reinhard Zumkeller, Oct 31 2004

Keywords

Comments

The natural numbers (A000027) occur infinitely many times as disjoint subsequences, see the example below and A100036, A100037, A100038 and A100039: exactly one k exists for all x < y such that a(k) = x and (a(k-1) = y or a(k+1) = y).
a(2*k^2 + k + 1) = a(A084849(k)) = 1 for k >= 0;
a(2*k^2 - 3*k) = a(A014107(k)) = 2 for k > 1;
a(2*k^2 + 5*k) = a(A033537(k)) = 3 for k > 1;
a(2*k^2 + k - 5) = a(A100040(k)) = 4 for k > 2;
a(2*k^2 + k - 7) = a(A100041(k)) = 5 for k > 3.

Examples

			First terms (10 = A, 11 = B, 12 = C) and some subsequences = A000027:
1231435425165764736271879869584938291A9BA8B7A6B5A4B3A2B1CBD
123.4.5....6.7........8.9............A.B................C.D.
...1....2........3............4................5..........
..........1........2............3................4......
.....................1............2................3....
		
Showing 1-9 of 9 results.