A033580 Four times second pentagonal numbers: a(n) = 2*n*(3*n+1).
0, 8, 28, 60, 104, 160, 228, 308, 400, 504, 620, 748, 888, 1040, 1204, 1380, 1568, 1768, 1980, 2204, 2440, 2688, 2948, 3220, 3504, 3800, 4108, 4428, 4760, 5104, 5460, 5828, 6208, 6600, 7004, 7420, 7848, 8288, 8740, 9204, 9680, 10168, 10668, 11180, 11704, 12240
Offset: 0
Links
- Ivan Panchenko, Table of n, a(n) for n = 0..1000
- M. K. Siddiqui, M. Naeem, N. A. Rahman, and M. Imran, Computing topological indices of certain networks, J. of Optoelectronics and Advanced Materials, 18, No. 9-10 (2016), pp. 884-892.
- Leo Tavares, Illustration: Crossed Stars
- Leo Tavares, Illustration: Four Quarter Star Crosses
- Leo Tavares, Illustration: Triangulated Star Crosses
- Leo Tavares, Illustration: Oblong Star Crosses
- Leo Tavares, Illustration: Crossed Diamond Stars
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
GAP
List([0..50], n-> 2*n*(3*n+1)); # G. C. Greubel, Oct 09 2019
-
Magma
[2*n*(3*n+1): n in [0..50]]; // G. C. Greubel, Oct 09 2019
-
Maple
seq(2*n*(3*n+1), n=0..50); # G. C. Greubel, Oct 09 2019
-
Mathematica
4*Binomial[3*Range[50]-2, 2]/3 (* G. C. Greubel, Oct 09 2019 *)
-
PARI
a(n)=2*n*(3*n+1) \\ Charles R Greathouse IV, Sep 28 2015
-
Sage
[2*n*(3*n+1) for n in (0..50)] # G. C. Greubel, Oct 09 2019
Formula
a(n) = a(n-1) +12*n -4 (with a(0)=0). - Vincenzo Librandi, Aug 05 2010
G.f.: 4*x*(2+x)/(1-x)^3. - Colin Barker, Feb 13 2012
a(-n) = A033579(n). - Michael Somos, Jun 09 2014
E.g.f.: 2*x*(4 + 3*x)*exp(x). - G. C. Greubel, Oct 09 2019
From Amiram Eldar, Jan 14 2021: (Start)
Sum_{n>=1} 1/a(n) = 3/2 - Pi/(4*sqrt(3)) - 3*log(3)/4.
Sum_{n>=1} (-1)^(n+1)/a(n) = -3/2 + Pi/(2*sqrt(3)) + log(2). (End)
From Leo Tavares, Oct 12 2021: (Start)
a(n) = 4*A005449(n). See Four Quarter Star Crosses illustration.
a(n) = 2*A049451(n).
Comments