cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A098098 a(n) = sigma(6*n+5)/6.

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 7, 8, 9, 10, 14, 12, 16, 14, 15, 20, 17, 18, 19, 24, 26, 22, 23, 28, 25, 32, 32, 28, 29, 30, 38, 32, 33, 40, 40, 44, 42, 38, 39, 40, 57, 42, 43, 44, 45, 62, 47, 56, 49, 56, 62, 52, 53, 60, 64, 68, 64, 58, 59, 60, 74, 72, 70, 64, 65, 80, 67, 76, 80, 70, 93, 72
Offset: 0

Views

Author

Vladeta Jovovic, Sep 14 2004

Keywords

Comments

Euler transform of period 6 sequence [2, 0, 0, 0, 2, -4, ...].
Expansion of q^(-5/6) * (eta(q)^-1 * eta(q^2) * eta(q^3) * eta(q^6))^2 in powers of q. - Michael Somos, Sep 16 2004
2*a(n) is the number of bipartitions of 2*n+1 that are 3-cores. See Baruah and Nath. - Michel Marcus, Apr 13 2020

Examples

			G.f. =1 + 2*x + 3*x^2 + 4*x^3 + 5*x^4 + 8*x^5 + 7*x^6 + 8*x^7 + 9*x^8 + 10*x^9 + ...
G.f. = q^5 + 2*q^11 + 3*q^17 + 4*q^23 + 5*q^29 + 8*q^35 + 7*q^41 + 8*q^47 + 9*q^53 + ...
		

Crossrefs

Programs

  • Magma
    Basis( ModularForms( Gamma0( 36), 2), 432)[6]; /* Michael Somos, Jul 09 2018 */
  • Mathematica
    Table[DivisorSigma[1, 6 n + 5]/6, {n, 0, 71}] (* Ivan Neretin, Apr 30 2016 *)
  • PARI
    a(n) = sigma(6*n + 5)/6
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^3 + A) * eta(x^6 + A) / eta(x + A))^2, n))} /* Michael Somos, Sep 16 2004 */
    

Formula

G.f.: (Product_{k>0} (1 + x^k) * (1 - x^(3*k)) * (1 - x^(6*k)))^2. - Michael Somos, Sep 16 2004
From Michael Somos, Jul 09 2018: (Start)
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A252650. -
Convolution square of A121444.
A232343(2*n) = (-1)^n * A258831(n) = A000203(6*n + 4) = a(n). A033686(2*n) = -A134079(2*n + 1) = 2 * a(n). A121443(6*n + 5) = A133739(6*n + 5) = A232356(6*n + 5) = A134077(3*n + 2) = 6 * a(n). A125514(6*n + 5) = 24 * a(n). A134078(6*n + 5) = -36 * a(n). A186100(6*n + 5) = -72 * a(n). (End)
From Amiram Eldar, Dec 16 2022: (Start)
a(n) = A000203(A016969(n))/6.
Sum_{k=1..n} a(k) = (Pi^2/18) * n^2 + O(n*log(n)). (End)

A097723 One fourth of sum of divisors of 4n+3.

Original entry on oeis.org

1, 2, 3, 6, 5, 6, 10, 8, 12, 14, 11, 12, 18, 18, 15, 26, 17, 18, 31, 20, 21, 30, 28, 30, 39, 26, 27, 38, 36, 36, 42, 32, 33, 60, 35, 42, 57, 38, 48, 54, 41, 42, 65, 62, 45, 62, 54, 48, 84, 50, 60, 78, 53, 66, 74, 56, 57, 96, 72, 60, 91, 70, 63, 108, 76, 66, 90, 68, 93, 104, 71, 84, 98
Offset: 0

Views

Author

N. J. A. Sloane, Sep 11 2004

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			1 + 2*x + 3*x^2 + 6*x^3 + 5*x^4 + 6*x^5 + 10*x^6 + 8*x^7 + 12*x^8 + ...
q^3 + 2*q^7 + 3*q^11 + 6*q^15 + 5*q^19 + 6*q^23 + 10*q^27 + 8*q^31 + ...
		

References

  • Nathan J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 76, Eq. (31.54).

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[1, 4n+3]/4, {n, 0, 72}] (* Jean-François Alcover, Nov 30 2015 *)
  • PARI
    {a(n) = if( n<0, 0, sigma(4*n + 3) / 4)} /* Michael Somos, Jul 05 2006 */
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^4 + A)^2 / eta(x + A))^2, n))} /* Michael Somos, Jul 05 2006 */

Formula

Euler transform of period 4 sequence [2, 0, 2, -4, ...]. - Vladeta Jovovic, Sep 14 2004
Expansion of q^(-3/4) * eta^2(q^2) * eta^4(q^4) / eta^2(q) in powers of q. - Michael Somos, Jul 05 2006
Expansion of q^(-3/2) * (theta_2(q) * theta_2(q^2))^2 / 16 in powers of q^2. - Michael Somos, Jul 05 2006
Expansion of (psi(x) * psi(x^2))^2 in powers of x where psi() is a Ramanujan theta function.
a(n) = sigma(4*n + 3) / 4 = A000203(4*n + 3) / 4.
a(n) = number of solutions of 8*n + 6 = x^2 + y^2 + 2*z^2 + 2*w^2 in positive odd integers.
a(n) = number of representations of n as the sum of two triangular numbers and twice two triangular numbers. - Michael Somos, Jul 05 2006
G.f.: (Product_{k>0} (1 - x^(4*k))^2 / (1 - x^(2*k - 1)))^2.
a(n) = A000203(A004767(n))/4. - Michel Marcus, Nov 30 2015
Sum_{k=0..n} a(k) = (Pi^2/16) * n^2 + O(n*log(n)). - Amiram Eldar, Dec 17 2022

A096726 Expansion of eta(q^3)^10 / (eta(q) * eta(q^9))^3 in powers of q.

Original entry on oeis.org

1, 3, 9, 12, 21, 18, 36, 24, 45, 12, 54, 36, 84, 42, 72, 72, 93, 54, 36, 60, 126, 96, 108, 72, 180, 93, 126, 12, 168, 90, 216, 96, 189, 144, 162, 144, 84, 114, 180, 168, 270, 126, 288, 132, 252, 72, 216, 144, 372, 171, 279, 216, 294, 162, 36, 216, 360, 240, 270, 180, 504
Offset: 0

Views

Author

Michael Somos, Jul 06 2004

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 + 3*x + 9*x^2 + 12*x^3 + 21*x^4 + 18*x^5 + 36*x^6 + 24*x^7 + 45*x^8 + ...
		

References

  • Bruce C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, 1991, see p. 475, Entry 7(i).

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma0(9), 2), 61); A[1] + 3*A[2] + 9*A[3]; /* Michael Somos, Aug 25 2014 */
  • Mathematica
    CoefficientList[ Series[1 + Sum[k(3x^k/(1 - x^k) - 27x^(9k)/(1 - x^(9k))), {k, 1, 60}], {x, 0, 60}], x] (* Robert G. Wilson v, Jul 14 2004 *)
    a[ n_] := If[ n < 1, Boole[ n == 0], 3 Sum[ If[ Mod[ d, 9] > 0, d, 0], {d, Divisors @ n }]]; (* Michael Somos, Aug 25 2014 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ q^3]^10 / (QPochhammer[ q] QPochhammer[ q^9])^3, {q, 0, n}]; (* Michael Somos, Aug 25 2014 *)
  • PARI
    {a(n) = if( n<1, n==0, 3 * sigma(n) - if( n%9==0, 27 * sigma(n/9)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^3 + A)^10 / (eta(x + A) * eta(x^9 + A))^3, n))};
    
  • PARI
    {a(n) = polcoeff( sum(k=1, n, k*3* (x^k / (1 - x^k) - 9*x^(9*k) / (1 - x^(9*k))), 1 + x * O(x^n)), n)};
    

Formula

G.f.: Product_{k>0} (1 - x^(3*k))^10 / ((1 - x^k) * (1 - x^(9*k)))^3 = 1 + Sum_{k>0} k * (3*x^k / (1 - x^k) - 27 * x^(9*k) / (1 - x^(9*k))).
Euler transform of period 9 sequence [ 3, 3, -7, 3, 3, -7, 3, 3, -4, ...].
a(n) = 3 * b(n) where b(n) is multiplicative and b(3^e) = 1 + 3*(e>0), b(p^e) = (p^(e+1) - 1) / (p - 1) otherwise.
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = u^2*w + 4*u*w^2 + v^3 - 6*u*v*w.
Expansion of b(q^3)^3 / b(q) = c(q)^3 / (9*c(q^3)) = (a(q)^2 + 3*a(q^3)^2) / 4 = (a(q)^2 + a(q)*b(q) + b(q)^2) / 3 in powers of q where a(), b(), c() are cubic AGM theta functions.
G.f. is a period 1 Fourier series which satisfies f(-1 / (9 t)) = 9 (t/i)^2 f(t) where q = exp(2 Pi i t). - Michael Somos, Aug 25 2014
a(3*n + 2) = A281722(3*n + 2) + 27 * A033686(n). a(n) == A281722(n) (mod 27). - Michael Somos, Sep 04 2017
Sum_{k=1..n} a(k) ~ c * n^2, where c = 2*Pi^2/9 = 2.193245... . - Amiram Eldar, Dec 28 2023

A134079 Expansion of q^(-2/3) * c(-q)^2 / 9 in powers of q where c(q) is a cubic AGM theta function.

Original entry on oeis.org

1, -2, 5, -4, 8, -6, 14, -8, 14, -10, 21, -16, 20, -14, 28, -16, 31, -18, 40, -20, 32, -28, 42, -24, 38, -32, 62, -28, 44, -30, 56, -40, 57, -34, 70, -36, 72, -38, 70, -48, 62, -52, 85, -44, 68, -46, 112, -56, 74, -50, 100, -64, 80, -64, 98, -56, 108, -58, 124
Offset: 0

Views

Author

Michael Somos, Oct 06 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 - 2*x + 5*x^2 - 4*x^3 + 8*x^4 - 6*x^5 + 14*x^6 - 8*x^7 + 14*x^8 - ...
G.f. = q^2 - 2*q^5 + 5*q^8 - 4*q^11 + 8*q^14 - 6*q^17 + 14*q^20 - 8*q^23 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ -x^3]^3 / QPochhammer[ -x])^2, {x, 0, n}]; (* Michael Somos, Feb 19 2015 *)
    a[ n_] := If[ n < 0, 0, (-1)^n DivisorSigma[ 1, 3 n + 2] / 3]; (* Michael Somos, Feb 19 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x*O(x^n); polcoeff( ( eta(x + A) * eta(x^4 + A) * eta(x^6 + A)^9 / ( eta(x^2 + A) * eta(x^3 + A) * eta(x^12 + A) )^3 )^2, n))};
    
  • PARI
    {a(n) = if( n<0, 0, (-1)^n * sigma(3*n + 2) / 3)}; /* Michael Somos, Feb 19 2015 */

Formula

Expansion of ( f(x^3)^3 / f(x) )^2 in powers of x where f() is a Ramanujan theta function.
Expansion of q^(-2/3) * eta(q)^2 * eta(q^4)^2 * eta(q^6)^18 / (eta(q^2) * eta(q^3)* eta(q^12))^6 in powers of q.
Euler transform of period 12 sequence [ -2, 4, 4, 2, -2, -8, -2, 2, 4, 4, -2, -4, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = (4/3) (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A263773.
a(n) = (-1)^n * A033686(n). 18 * a(n) = A134078(3*n + 2).
From Michael Somos, Feb 19 2015: (Start)
a(2*n + 1) = -2 * A098098(n).
Convolution square of A227696. (End)
Sum_{k=1..n} a(k) ~ (Pi^2/54) * n^2. - Amiram Eldar, Nov 23 2023

A229615 Expansion of q^2 * psi(q^3)^6 / psi(q)^2 in powers of q where psi() is a Ramanujan theta function.

Original entry on oeis.org

1, -2, 3, 0, -1, 0, 7, -8, 6, 0, 1, 0, 8, -12, 15, 0, -7, 0, 18, -16, 12, 0, 5, 0, 14, -26, 24, 0, -6, 0, 31, -24, 18, 0, -5, 0, 20, -28, 42, 0, -8, 0, 36, -48, 24, 0, 13, 0, 31, -36, 42, 0, -25, 0, 56, -40, 30, 0, 6, 0, 32, -64, 63, 0, -12, 0, 54, -48, 48, 0
Offset: 2

Views

Author

Michael Somos, Sep 26 2013

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q^2 - 2*q^3 + 3*q^4 - q^6 + 7*q^8 - 8*q^9 + 6*q^10 + q^12 + ...
		

Crossrefs

Programs

  • Magma
    Basis( ModularForms( Gamma0(6), 2), 70)[3] /* Michael Somos, Mar 05 2023 */
  • Mathematica
    a[ n_] := If[n < 1, 0, Sum[ {0, 1, -2, 1, 0, 0}[[ Mod[d, 6, 1]]] n/d, {d, Divisors[n]}]];
    a[ n_] := If[n < 1, 0, Sum[ {0, 1/2, -2/3, 1/2, 0, 0}[[ Mod[d, 6, 1]]] d, {d, Divisors[n]}]];
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, q^(3/2)]^6 / EllipticTheta[ 2, 0, q^(1/2)]^2 / 16, {q, 0, n}];
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, n/d * [0, 0, 1, -2, 1, 0][d%6 + 1]))};
    
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, d * [0, 0, 1/2, -2/3, 1/2, 0][d%6 + 1]))};
    
  • PARI
    {a(n) = my(A); if( n<2, 0, n -= 2; A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^6 + A)^6 / (eta(x^2 + A)^2 * eta(x^3 + A)^3))^2, n))};
    
  • Sage
    ModularForms( Gamma0(6), 2, prec=70).2;
    

Formula

Expansion of (a(q) - a(q^2))^2 / 36 = c(q^2)^4 / (9 * c(q)^2) in powers of q where a(), c() are cubic AGM theta functions.
Expansion of ((eta(q) * eta(q^6)^6) / (eta(q^2)^2 * eta(q^3)^3))^2 in powers of q.
Euler transform of period 6 sequence [ -2, 2, 4, 2, -2, -4, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (6 t)) = (1/12) (t / i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A229616.
G.f.: sum_{k>0} x^(6*k-4) / (1 - x^(6*k-4))^2 - 2 * x^(6*k-3) / (1 - x^(6*k-3))^2 + x^(6*k-2) / (1 - x^(6*k-2))^2.
G.f.: sum_{k>0} (3*k-2) * x^(6*k-4) / (1 - x^(6*k-4)) - (4*k-2) * x^(6*k-3) / (1 - x^(6*k-3)) + (3*k-1) * x^(6*k-2) / (1 - x^(6*k-2)).
a(6*n + 1) = a(6*n + 5) = 0. a(6*n + 2) = A144614(n). a(6*n + 3) = -2 * A008438(n). a(6*n + 4) = 3 * A033686(n).
Convolution square of A093829.

A281722 Expansion of r(q) * s(q) in powers of q where r(), s() are cubic AGM functions.

Original entry on oeis.org

1, 3, -18, 12, 21, -36, 36, 24, -90, 12, 54, -72, 84, 42, -144, 72, 93, -108, 36, 60, -252, 96, 108, -144, 180, 93, -252, 12, 168, -180, 216, 96, -378, 144, 162, -288, 84, 114, -360, 168, 270, -252, 288, 132, -504, 72, 216, -288, 372, 171, -558, 216, 294, -324
Offset: 0

Views

Author

Michael Somos, Jan 28 2017

Keywords

Comments

Cubic AGM theta functions: r(q) (see A004016), s(q) (A005928), t(q) (A005882).

Examples

			G.f. = 1 + 3*q - 18*q^2 + 12*q^3 + 21*q^4 - 36*q^5 + 36*q^6 + 24*q^7 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ q]^3 (QPochhammer[ q]^3 + 9 q QPochhammer[ q^9]^3) / QPochhammer[ q^3]^2, {q, 0, n}];
  • PARI
    {a(n) = if( n<0, 0, my(A = x * O(x^n)); polcoeff( eta(x + A)^3 * (eta(x + A)^3 + 9 * x * eta(x^9 + A)^3) / eta(x^3 + A)^2, n))};

Formula

Convolution of the sequences A004016 and A005928.
The g.f. is the product of the g.f.'s for A004016 and A005928. - N. J. A. Sloane, Jan 30 2017
Expansion of eta(q)^3 * (eta(q)^3 + 9 * eta(q^9)^3) / eta(q^3)^2 in powers of q.
G.f. is a period 1 Fourier series which satisfies f(-1 / (9 t)) = 81 (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A144614.
a(3*n + 2) = A096726(3*n + 2) - 27 * A033686(n). a(n) == A096726(n) (mod 27). - Michael Somos, Sep 04 2017

A144615 a(n) = A000203(3n+2).

Original entry on oeis.org

3, 6, 15, 12, 24, 18, 42, 24, 42, 30, 63, 48, 60, 42, 84, 48, 93, 54, 120, 60, 96, 84, 126, 72, 114, 96, 186, 84, 132, 90, 168, 120, 171, 102, 210, 108, 216, 114, 210, 144, 186, 156, 255, 132, 204, 138, 336, 168, 222, 150, 300, 192, 240, 192, 294, 168, 324, 174, 372, 180, 336
Offset: 0

Views

Author

N. J. A. Sloane, Jan 15 2009

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 3 + 6*x + 15*x^2 + 12*x^3 + 24*x^4 + 18*x^5 + 42*x^6 + 24*x^7 + 42*x^8 + ...
G.f. = 3*q^2 + 6*q^5 + 15*q^8 + 12*q^11 + 24*q^14 + 18*q^17 + 42*q^20 + 24*q^23 + ...
		

Crossrefs

Programs

  • GAP
    sequence := List([0..10^4],n->Sigma(3*n+2)); # Muniru A Asiru, Dec 29 2017
    
  • Magma
    [SumOfDivisors(3*n+2): n in [0..70]]; // Vincenzo Librandi, Jan 19 2018
  • Maple
    with(numtheory):
    seq(sigma(3*n+2), n=0..10^3); # Muniru A Asiru, Dec 29 2017
  • Mathematica
    a[ n_] := If[ n < 0, 0, DivisorSigma[ 1, 3 n + 2]]; (* Michael Somos, Jul 14 2015 *)
    a[ n_] := SeriesCoefficient[ 3 (QPochhammer[ x^3]^3 / QPochhammer[ x])^2, {x, 0, n}]; (* Michael Somos, Jul 14 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( 3 * (eta(x^3 + A)^3 / eta(x + A))^2, n))}; /* Michael Somos, Jun 07 2012 */
    
  • PARI
    a(n)=sigma(3*n+2); \\ Michel Marcus, Jul 14 2015
    

Formula

Expansion of q^(-2/3) * c(q)^2 / 3 in powers of q where c() is a cubic AGM theta function. - Michael Somos, Jun 07 2012
Expansion of q^(-2/3) * 3 * (eta(q^3)^3 / eta(q))^2 in powers of q. - Michael Somos, Jun 07 2012
a(n) = A000203(A016789(n)). - Michel Marcus, Jul 14 2015
a(n) = 3*A033686(n). - Robert G. Wilson v, Jan 12 2018
Sum_{k=1..n} a(k) = (2*Pi^2/9) * n^2 + O(n*log(n)). - Amiram Eldar, Dec 16 2022

A232343 Expansion of q^(-5/3) * c(q^2)^3 / (9 * c(q)) in powers of q where c() is a cubic AGM theta function.

Original entry on oeis.org

1, -1, 2, 0, 3, -2, 4, 0, 5, -5, 8, 0, 7, -4, 8, 0, 9, -8, 10, 0, 14, -6, 12, 0, 16, -14, 14, 0, 15, -8, 20, 0, 17, -14, 18, 0, 19, -10, 24, 0, 26, -21, 22, 0, 23, -16, 28, 0, 25, -20, 32, 0, 32, -14, 28, 0, 29, -28, 30, 0, 38, -16, 32, 0, 33, -31, 40, 0, 40
Offset: 0

Views

Author

Michael Somos, Nov 22 2013

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 - x + 2*x^2 + 3*x^4 - 2*x^5 + 4*x^6 + 5*x^8 - 5*x^9 + 8*x^10 + ...
G.f. = q^5 - q^8 + 2*q^11 + 3*q^17 - 2*q^20 + 4*q^23 + 5*q^29 - 5*q^32 + ...
		

Crossrefs

Programs

  • Magma
    Basis( ModularForms( Gamma0(18), 2), 210) [6]; /* Michael Somos, Jul 09 2018 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x] QPochhammer[ x^6]^9 / (QPochhammer[ x^2] QPochhammer[ x^3])^3, {x, 0, n}];
    a[ n_] := SeriesCoefficient[ (QPochhammer[ -x^3] QPochhammer[ x^12])^3 / (QPochhammer[ -x] QPochhammer[ x^4]), {x, 0, n}];
    a[ n_] := If[ n < 0, 0, Times @@ (Which[# == 2, 2 - 2^#2,# == 3, 1, True, (#^(#2 + 1) - 1) / (# - 1)] & @@@ FactorInteger[3 n + 5]) / 6]; (* Michael Somos, Jul 09 2018 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^6 + A)^9 / (eta(x^2 + A) * eta(x^3 + A))^3, n))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<0, 0, n = 3*n + 5; A = factor(n); 1/6 * prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, 2 - 2^e, p==3, 0, (p^(e+1) - 1) / (p - 1))))};
    

Formula

Expansion of q^(-5/3) * eta(q) * eta(q^6)^9 / (eta(q^2) * eta(q^3))^3 in powers of q.
Euler transform of period 6 sequence [-1, 2, 2, 2, -1, -4, ...].
a(n) = 1/6 * b(3*n + 5) where b() is multiplicative with b(2^e) = 2 - 2^e, b(3^e) = 0^e, b(p^e) = (p^(e+1) - 1) / (p - 1) if p>3.
a(2*n) = A098098(n). a(4*n + 1) = - A033686(n). a(4*n + 3) = 0.

A242874 Expansion of b(q)^2 in powers of q where b() is a cubic AGM theta function.

Original entry on oeis.org

1, -6, 9, 12, -42, 18, 36, -48, 45, 12, -108, 36, 84, -84, 72, 72, -186, 54, 36, -120, 126, 96, -216, 72, 180, -186, 126, 12, -336, 90, 216, -192, 189, 144, -324, 144, 84, -228, 180, 168, -540, 126, 288, -264, 252, 72, -432, 144, 372, -342, 279, 216, -588
Offset: 0

Views

Author

Michael Somos, May 26 2014

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 - 6*q + 9*q^2 + 12*q^3 - 42*q^4 + 18*q^5 + 36*q^6 - 48*q^7 + 45*q^8 + ...
		

References

  • O. Kolberg, The coefficients of j(tau) modulo powers of 3, Acta Univ. Bergen., Series Math., Arbok for Universitetet I Bergen, Mat.-Naturv. Serie, 1962 No. 16, pp. 1-7. See t, page 1.

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma0(9), 2), 53); A[1] - 6*A[2] + 9*A[3]; /* Michael Somos, Sep 27 2016 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ q]^3 / QPochhammer[ q^3])^2, {q, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^3 / eta(x^3 + A))^2, n))};
    
  • Sage
    A = ModularForms( Gamma0(9), 2, prec=53) . basis(); A[0] - 6*A[1] + 9*A[2];
    

Formula

Expansion of (eta(q)^3 / eta(q^3))^2 in powers of q.
Euler transform of period 3 sequence [-6, -6, -4, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (9 t)) = 243 (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A033686.
G.f.: Product_{k>0} ( (1 - x^k)^3 / (1 - x^(3*k)) )^2.
a(3*n) = A008653(n). a(3*n + 1) = -6 * A144614(n). a(3*n + 2) = 9 * A033686(n).
Convolution square of A005928.

A321527 Expansion of x^3 * c(x^2) * c(x^4)^2 / (9 * c(x)) in powers of x where c() is a cubic AGM theta function.

Original entry on oeis.org

0, 0, 0, 1, -1, 0, 2, 0, -3, 4, 0, 0, 1, 0, 0, 6, -7, 0, 8, 0, -6, 8, 0, 0, -1, 0, 0, 13, -8, 0, 12, 0, -15, 12, 0, 0, 7, 0, 0, 14, -18, 0, 16, 0, -12, 24, 0, 0, -5, 0, 0, 18, -14, 0, 26, 0, -24, 20, 0, 0, 6, 0, 0, 32, -31, 0, 24, 0, -18, 24, 0, 0, 5, 0, 0, 31
Offset: 0

Views

Author

Michael Somos, Nov 12 2018

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
Number 124 of the 126 eta-quotients listed in Table 1 of Williams 2012.

Examples

			G.f. = x^3 - x^4 + 2*x^6 - 3*x^8 + 4*x^9 + x^12 + 6*x^15 - 7*x^16 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma0(12), 2), 76); A[4] - A[5];
  • Mathematica
    a[ n_] := SeriesCoefficient[ x^3 QPochhammer[ x, x^2] QPochhammer[ x^12]^6 / (QPochhammer[ x^3, x^6]^3 QPochhammer[ x^4]^2), {x, 0, n}];
    a[ n_] := With[ {s = If[ FractionalPart @ # > 0, 0, DivisorSigma[1, #]] &}, If[ n < 1, 0, s[n/3] - s[n/4] - s[n/6] + s[n/12]]];
    a[ n_] := If[ n < 1, 0, Sum[ d {0, 0, 4, -3, 0, 2, 0, -3, 4, 0, 0, 0}[[Mod[d, 12, 1]]] / 12, {d, Divisors[n]}]];
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, d * [0, 0, 0, 4, -3, 0, 2, 0, -3, 4, 0, 0][d%12 + 1] / 12))};
    
  • PARI
    {a(n) = my(s = x -> if( frac(x), 0, sigma(x))); if( n<1, 0, s(n/3) - s(n/4) - s(n/6) + s(n/12))};
    
  • PARI
    {a(n) = my(A); n-=3; if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^6 + A)^3 * eta(x^12 + A)^6 / (eta(x^2 + A) * eta(x^3 + A)^3 * eta(x^4 + A)^2), n))};
    

Formula

Expansion of x^3 * (psi(x^3) * psi(x^6))^3 / (psi(x) * psi(x^2)) in powers of x where psi() is a Ramanujan theta function.
Expansion of x^3 * chi(-x) * f(-x^12)^6 / (chi(-x^3)^3 * f(-x^4)^2) in powers of x where chi(), f() are Ramanujan theta functions.
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = (1/6) (t / i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A321528.
a(n) = s(n/3) - s(n/4) - s(n/6) + s(n/12) where s(x) = sum of divisors of x for integer x else 0.
a(6*n + 1) = a(6*n + 5) = a(12*n + 2) = a(12*n + 10) = 0.
a(n) = A224226(n) if n>0. a(2*n) = -A229615(n). a(6*n + 3) = A008438(n). a(12*n + 6) = 2*A008438(n).
a(12*n + 3) = A112610(n). a(12*n + 4) = -A144614(n). a(12*n + 8) = -3*A033686(n). a(12*n + 9) = 4*A097723(n).
Showing 1-10 of 13 results. Next