cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A033686 One-ninth of theta series of A2[hole]^2.

Original entry on oeis.org

1, 2, 5, 4, 8, 6, 14, 8, 14, 10, 21, 16, 20, 14, 28, 16, 31, 18, 40, 20, 32, 28, 42, 24, 38, 32, 62, 28, 44, 30, 56, 40, 57, 34, 70, 36, 72, 38, 70, 48, 62, 52, 85, 44, 68, 46, 112, 56, 74, 50, 100, 64, 80, 64, 98, 56, 108, 58, 124, 60, 112, 76, 112, 64, 98, 66, 155, 80, 104
Offset: 0

Views

Author

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
Number of partition pairs of n where each partition is 3-core (see Theorem 2.1 of Wang link). - Michel Marcus, Jul 14 2015

Examples

			G.f. = 1 + 2*x + 5*x^2 + 4*x^3 + 8*x^4 + 6*x^5 + 14*x^6 + 8*x^7 + 14*x^8 + ...
G.f. = q^2 + 2*q^5 + 5*q^8 + 4*q^11 + 8*q^14 + 6*q^17 + 14*q^20 + 8*q^23 + ...
Theta series of A2[hole]^2 = c(q)^2 = 9*q^(2/3) + 18*q^(5/3) + 45*q^(8/3) + 36*q^(11/3) + 72*q^(14/3) + 54*q^(17/3) + ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 111, Eq (63)^2.

Crossrefs

Programs

  • GAP
    sequence := List([1..100010],n->Sigma(3*n-1)/3); # Muniru A Asiru, Dec 29 2017
    
  • Magma
    Basis( ModularForms( Gamma0(9), 2), 195)[3]; /* Michael Somos, Jul 14 2015 */
    
  • Magma
    [SumOfDivisors(3*n+2)/3: n in [0..70]]; // Vincenzo Librandi, Jan 13 2018
  • Maple
    with(numtheory): seq(sigma(3*n-1)/3, n=1..2000); # Muniru A Asiru, Jan 18 2018
  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ x^3]^3 / QPochhammer[ x])^2, {x, 0, n}]; (* Michael Somos, May 26 2014 *)
    Array[ DivisorSigma[1, 3 # - 1]/3 &, 69] (* Robert G. Wilson v, Jan 12 2018 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^3 + A)^3 / eta(x + A))^2, n))}; /* Michael Somos, Oct 17 2006 */
    
  • PARI
    a(n)=sigma(3*n+2)/3; \\ Michel Marcus, Jul 14 2015
    
  • Sage
    ModularForms( Gamma0(9), 2, prec=195).2 # Michael Somos, May 26 2014
    

Formula

a(n) = sigma(3*n+2)/3. Euler transform of period 3 sequence [2, 2, -4, ...]. - Vladeta Jovovic, Sep 14 2004
Expansion of q^(-2/3) * c(q)^2 / 9 in powers of q where c(q) is a cubic AGM theta function. - Michael Somos, Oct 17 2006
Expansion of q^(-2/3) * (eta(q^3)^3 / eta(q))^2 in powers of q. - Michael Somos, Mar 16 2012
Convolution square of A033687. - Michael Somos, Oct 17 2006
G.f. is a period 1 Fourier series which satisfies f(-1 / (9 t)) = (1/3) (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A242874.
27 * a(n) = A096726(3*n + 2) - A281722(3*n + 2). - Michael Somos, Sep 04 2017
a(n) = A144615(n)/3. - Robert G. Wilson v, Jan 12 2018
From Peter Bala, Jan 07 2021: (Start)
a(n) = (-1)^n*A134079(n).
A(x) = Sum_{n = -oo..oo} x^(2*n)/(1 - x^(3*n+1))^2 = Sum_{n = -oo..oo} x^(4*n+2)/(1 - x^(3*n+2))^2 (apply Ford, equation 1, with c = x^(3/2), d = x^(1/2), |x| < 1 to the g.f. Sum_{n = -oo..oo} x^n /(1 - x^(3*n + 1)) of A033687).
Conjectural g.f.: A(x) = Sum_{n = -oo..oo} x^n/(1 - x^(3*n+2))^2 = Sum_{n = -oo..oo} x^(5*n+1)/(1 - x^(3*n+1))^2. (End)
Sum_{k=1..n} a(k) = (2*Pi^2/27) * n^2 + O(n*log(n)). - Amiram Eldar, Dec 16 2022

A096726 Expansion of eta(q^3)^10 / (eta(q) * eta(q^9))^3 in powers of q.

Original entry on oeis.org

1, 3, 9, 12, 21, 18, 36, 24, 45, 12, 54, 36, 84, 42, 72, 72, 93, 54, 36, 60, 126, 96, 108, 72, 180, 93, 126, 12, 168, 90, 216, 96, 189, 144, 162, 144, 84, 114, 180, 168, 270, 126, 288, 132, 252, 72, 216, 144, 372, 171, 279, 216, 294, 162, 36, 216, 360, 240, 270, 180, 504
Offset: 0

Views

Author

Michael Somos, Jul 06 2004

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 + 3*x + 9*x^2 + 12*x^3 + 21*x^4 + 18*x^5 + 36*x^6 + 24*x^7 + 45*x^8 + ...
		

References

  • Bruce C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, 1991, see p. 475, Entry 7(i).

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma0(9), 2), 61); A[1] + 3*A[2] + 9*A[3]; /* Michael Somos, Aug 25 2014 */
  • Mathematica
    CoefficientList[ Series[1 + Sum[k(3x^k/(1 - x^k) - 27x^(9k)/(1 - x^(9k))), {k, 1, 60}], {x, 0, 60}], x] (* Robert G. Wilson v, Jul 14 2004 *)
    a[ n_] := If[ n < 1, Boole[ n == 0], 3 Sum[ If[ Mod[ d, 9] > 0, d, 0], {d, Divisors @ n }]]; (* Michael Somos, Aug 25 2014 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ q^3]^10 / (QPochhammer[ q] QPochhammer[ q^9])^3, {q, 0, n}]; (* Michael Somos, Aug 25 2014 *)
  • PARI
    {a(n) = if( n<1, n==0, 3 * sigma(n) - if( n%9==0, 27 * sigma(n/9)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^3 + A)^10 / (eta(x + A) * eta(x^9 + A))^3, n))};
    
  • PARI
    {a(n) = polcoeff( sum(k=1, n, k*3* (x^k / (1 - x^k) - 9*x^(9*k) / (1 - x^(9*k))), 1 + x * O(x^n)), n)};
    

Formula

G.f.: Product_{k>0} (1 - x^(3*k))^10 / ((1 - x^k) * (1 - x^(9*k)))^3 = 1 + Sum_{k>0} k * (3*x^k / (1 - x^k) - 27 * x^(9*k) / (1 - x^(9*k))).
Euler transform of period 9 sequence [ 3, 3, -7, 3, 3, -7, 3, 3, -4, ...].
a(n) = 3 * b(n) where b(n) is multiplicative and b(3^e) = 1 + 3*(e>0), b(p^e) = (p^(e+1) - 1) / (p - 1) otherwise.
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = u^2*w + 4*u*w^2 + v^3 - 6*u*v*w.
Expansion of b(q^3)^3 / b(q) = c(q)^3 / (9*c(q^3)) = (a(q)^2 + 3*a(q^3)^2) / 4 = (a(q)^2 + a(q)*b(q) + b(q)^2) / 3 in powers of q where a(), b(), c() are cubic AGM theta functions.
G.f. is a period 1 Fourier series which satisfies f(-1 / (9 t)) = 9 (t/i)^2 f(t) where q = exp(2 Pi i t). - Michael Somos, Aug 25 2014
a(3*n + 2) = A281722(3*n + 2) + 27 * A033686(n). a(n) == A281722(n) (mod 27). - Michael Somos, Sep 04 2017
Sum_{k=1..n} a(k) ~ c * n^2, where c = 2*Pi^2/9 = 2.193245... . - Amiram Eldar, Dec 28 2023

A282610 Expansion of b(q) * b(q^3) in powers of q where b() is a cubic AGM function.

Original entry on oeis.org

1, -3, 0, 3, 6, 0, -18, 3, 0, 12, 0, 0, 21, -15, 0, -36, -12, 0, 36, 21, 0, 24, 0, 0, -90, 15, 0, 12, -6, 0, 54, 12, 0, -72, 0, 0, 84, -33, 0, 42, 0, 0, -144, -24, 0, 72, 0, 0, 93, 18, 0, -108, 30, 0, 36, 0, 0, 60, 0, 0, -252, 3, 0, 96, 24, 0, 108, -15, 0
Offset: 0

Views

Author

Michael Somos, Feb 19 2017

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
G.f. is a period 1 Fourier series which satisfies f(-1 / (9*t)) = 729 (t/i)^2 g(t) where g() is the g.f. for A282611.

Examples

			G.f. = 1 - 3*q + 3*q^3 + 6*q^4 - 18*q^6 + 3*q^7 + 12*q^9 + 21*q^12 - 15*q^13 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma0(27), 2), 69); A[1] - 3*A[2] + 3*A[4] + 6*A[5] - 18*A[6];
  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ q]^3 QPochhammer[ q^3]^2 / QPochhammer[ q^9], {q, 0, n}];
  • PARI
    first(n)=my(q='x+O('x^(n+1))); Vec(eta(q)^3 * eta(q^3)^2 / eta(q^9)) \\ Charles R Greathouse IV, Jun 02 2017
    

Formula

Expansion of eta(q)^3 * eta(q^3)^2 / eta(q^9) in powers of q.
Euler transform of period 9 sequence [-3, -3, -5, -3, -3, -5, -3, -3, -4, ...].
a(3*n) = A281722(n). a(3*n + 1) = -3 * A030206(n). a(3*n + 2) = 0.

A320676 Expansion of (r(q) * s(q))^3 where r(), s() are cubic AGM theta functions.

Original entry on oeis.org

1, 9, -27, -261, 765, 2214, -11529, 11304, 24813, -81423, 71118, 106812, -354609, 262350, 385992, -1049166, 739917, 990306, -2713203, 1709604, 2287710, -5646600, 3707532, 4448952, -11344833, 6737319, 8450838, -19943757, 12298248, 14238558, -34639974, 19856736
Offset: 0

Views

Author

Seiichi Manyama, Oct 19 2018

Keywords

Comments

Cubic AGM theta functions: r(q) (see A004016), s(q) (A005928), t(q) (A005882).

Crossrefs

Formula

Expansion of (eta(q)^3 * (eta(q)^3 + 9 * eta(q^9)^3) / eta(q^3)^2)^3 in powers of q.
Showing 1-4 of 4 results.