A033816 a(n) = 2*n^2 + 3*n + 3.
3, 8, 17, 30, 47, 68, 93, 122, 155, 192, 233, 278, 327, 380, 437, 498, 563, 632, 705, 782, 863, 948, 1037, 1130, 1227, 1328, 1433, 1542, 1655, 1772, 1893, 2018, 2147, 2280, 2417, 2558, 2703, 2852, 3005, 3162, 3323, 3488, 3657, 3830, 4007, 4188, 4373, 4562
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
- Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
- Wikipedia, Siamese method.
- Index entries for sequences related to magic squares
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
I:=[3, 8, 17]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..50]]; // Vincenzo Librandi, Jul 07 2012
-
Mathematica
a[n_]:=2*n^2+3*n+3;...and/or...Array[ -#*(1-#*2)+2&,5!,0] (* Vladimir Joseph Stephan Orlovsky, Dec 21 2008 *) CoefficientList[Series[(3-x+2*x^2)/(1-x)^3,{x,0,50}],x] (* Vincenzo Librandi, Jul 07 2012 *) LinearRecurrence[{3,-3,1},{3,8,17},50] (* Harvey P. Dale, May 07 2015 *)
-
PARI
a(n)=2*n^2+3*n+3 \\ Charles R Greathouse IV, Sep 24 2015
Formula
From Colin Barker, Jun 27 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: (3 - x + 2*x^2)/(1 - x)^3. (End)
E.g.f.: (2*x^2 + 5*x + 3)*exp(x). - G. C. Greubel, Jul 15 2017
Extensions
More terms from James Sellers, Jun 20 2000
Offset corrected by Charles R Greathouse IV, Jul 25 2010
Comments