cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A033855 Numbers k such that j(k)*phi(k) = s(phi(k)), where j(k) = A033831(k), s(k) = sigma(k) - k.

Original entry on oeis.org

1, 2, 7, 9, 29, 143, 155, 183, 731, 791, 1011, 1346, 35659, 60484, 65524, 525227, 525557, 525617, 526697, 529817, 531779, 567437, 1047554, 2541679, 33550337, 214486281, 1476844097, 1478227937, 1543409687, 14200144243, 14200244477, 14200257551, 14200349281, 14200779611, 14201040053, 14201501401
Offset: 1

Views

Author

Keywords

Comments

phi(a(n)) is a multiperfect number (A007691). - Max Alekseyev, Oct 09 2023

Crossrefs

Programs

  • Mathematica
    j[n_] := DivisorSum[n, 1&, # > 2 && n/# < #-1 &]; aQ[n_] := j[n] * (p = EulerPhi[ n]) == DivisorSigma[1, p] - p; Select[Range[10^4], aQ] (* Amiram Eldar, Jul 01 2019 *)

Extensions

More terms from Amiram Eldar, Jul 01 2019
Terms a(27) onward from Max Alekseyev, Oct 09 2023

A033856 Numbers k such that j(k)*phi(k) = sigma(phi(k)), j(k) = A033831(k).

Original entry on oeis.org

14, 58, 175, 244, 833, 1017, 1348, 8653, 33263, 33497, 33611, 34099, 34151, 34529, 34771, 36281, 36449, 36743, 37367, 37373, 38311, 38695, 38735, 38915, 39035, 39263, 39295, 39431, 39995, 41015, 41635, 42119, 46209, 46617, 46731, 47067, 49911, 50007, 50871
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    j[n_] := DivisorSum[n, 1&, # > 2 && n/# < #-1 &]; aQ[n_] := j[n]*(p = EulerPhi[ n]) == DivisorSigma[1, p]; Select[Range[10^4], aQ] (* Amiram Eldar, Jul 01 2019 *)

Extensions

More terms from Amiram Eldar, Jul 01 2019

A033858 Numbers k such that j(k) + ud(k) = d(k), where j(k) = A033831, ud(k) = number of unitary divisors of k (A034444), d(k) = number of divisors of k (A000005).

Original entry on oeis.org

1, 2, 4, 8, 9, 12, 20, 24, 25, 27, 40, 49, 54, 88, 104, 120, 121, 125, 135, 136, 152, 168, 169, 184, 189, 232, 248, 250, 264, 270, 280, 289, 296, 297, 312, 328, 343, 344, 351, 361, 375, 376, 378, 408, 424, 440, 456, 459, 472, 488, 513, 520, 529, 536, 568, 584
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    j[n_] := DivisorSum[n, 1&, # > 2 && n/# < #-1 &]; Select[Range[10^3], j[#] + 2^PrimeNu[#] == DivisorSigma[0, #] &] (* Amiram Eldar, Jul 14 2019 *)

Extensions

More terms from Amiram Eldar, Jul 14 2019

A033859 Numbers k such that A033831(k) = A034444(k) where A034444(k) = number of unitary divisors of k.

Original entry on oeis.org

8, 16, 24, 27, 36, 40, 54, 81, 88, 100, 104, 120, 125, 135, 136, 152, 168, 184, 189, 196, 225, 232, 248, 250, 264, 270, 272, 280, 296, 297, 312, 328, 343, 344, 351, 375, 376, 378, 408, 424, 440, 441, 456, 459, 472, 484, 488, 513, 520, 536, 568, 584, 594, 616
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): for n from 1 to 1200 do it := divisors(n): count := 0: for i from 1 to nops(it) do if it[i]>=3 and 1<=n/it[i] and n/it[i]<=(it[i]-2) then count := count+1 fi:od: if count=2^nops(ifactors(n)[2]) then printf(`%d,`,n) fi; od:
  • Mathematica
    j[n_] := DivisorSum[n, 1&, # > 2 && n/# < #-1 &]; Select[Range[1000], j[#] == 2^PrimeNu[#] &] (* Amiram Eldar, Jun 11 2019 *)

Extensions

More terms from James Sellers, Jun 20 2000

A033872 Numbers k such that A033831(k) is prime.

Original entry on oeis.org

8, 10, 12, 14, 15, 16, 18, 20, 21, 22, 26, 27, 28, 30, 32, 33, 34, 35, 38, 39, 42, 44, 45, 46, 48, 50, 51, 52, 55, 56, 57, 58, 62, 63, 64, 65, 68, 69, 72, 74, 75, 76, 77, 80, 81, 82, 85, 86, 87, 90, 91, 92, 93, 94, 95, 98, 99
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A033831.

Programs

  • Mathematica
    f[n_] := DivisorSum[n, 1&, # > 2 && n/# < #-1 &]; Select[Range[1000], PrimeQ[f[#]] &] (* Amiram Eldar, Jun 11 2019 *)
  • PARI
    isok(n) = isprime(sumdiv(n, d, (d>=3) && (q=n/d) && (q>=1) && (q<=d-2))); \\ Michel Marcus, Jun 11 2019

A033852 Integers k such that j(k)*phi(k) = sigma(k), where j(n) = A033831(n).

Original entry on oeis.org

35, 105, 248, 418, 594, 744, 812, 1254
Offset: 1

Views

Author

Keywords

Comments

a(9) > 10^7. - Michel Marcus, Nov 05 2014
a(9) > 10^8. - Manfred Scheucher, May 30 2015

Crossrefs

Cf. A000010 (phi), A000203 (sigma), A033831.

Programs

  • PARI
    isok(n) = sumdiv(n, d, (d>=3) && (q=n/d) && (q>=1) && (q<=d-2))*eulerphi(n) == sigma(n); \\ Michel Marcus, Nov 05 2014

A033853 Integers k such that j(k)*d(k)=phi(k), where j = A033831.

Original entry on oeis.org

3, 15, 56, 102, 228, 234, 384, 408, 510, 864, 936, 1092, 1140, 1170, 1920, 2040, 4320, 4680, 5460
Offset: 1

Views

Author

Keywords

Comments

If it exists, a(20) > 10^9. - Sean A. Irvine, Jul 19 2020

Crossrefs

Cf. A000005 (d), A000010 (phi), A033831.

Extensions

a(17)-a(19) from Sean A. Irvine, Jul 19 2020

A033854 Numbers k such that j(k)*ud(k)=phi(k), j(n) = A033831, ud(n) = number of unitary divisors of n (A034444).

Original entry on oeis.org

3, 4, 8, 15, 20, 28, 40, 102, 132, 140, 252, 360, 510, 780
Offset: 1

Views

Author

Keywords

Comments

If it exists, a(15) > 10^9. - Sean A. Irvine, Jul 20 2020

Crossrefs

Cf. A000010 (phi), A033831, A034444.

A033857 Numbers n such that j(n)*phi(n) = usigma(n), where j(n) = A033831, usigma(n) = sum of unitary divisors of n (A034448).

Original entry on oeis.org

35, 44, 56, 105, 198, 418, 1254
Offset: 1

Views

Author

Keywords

Comments

If it exists, a(8) > 10^9. - Sean A. Irvine, Jul 20 2020

Crossrefs

Cf. A000010 (phi), A034448 (usigma), A033831.

A100563 Number of bases less than sqrt(n) in which n is a palindrome.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 2, 0, 0, 1, 2, 0, 1, 0, 1, 2, 1, 1, 1, 0, 2, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 2, 0, 0, 1, 1, 2, 2, 0, 0, 2, 1, 2, 0, 1, 0, 1, 1, 2, 1, 3, 0, 2, 1, 0, 0, 1, 1, 2, 1, 0, 0, 0, 2, 0, 2, 1, 2, 1, 0, 3, 1, 0, 1, 1, 0, 2, 2, 2, 0, 0, 0, 1, 2, 1, 3, 1, 0, 0, 2, 2
Offset: 1

Views

Author

Gordon Hamilton, Nov 29 2004

Keywords

Comments

Is there a number m such that a(n) > 0 for all n > m? I call the set of numbers for which a(n)=0 "unkempt" for refusing to use a mirror in any base. Is there an infinite number of unkempt numbers? a(n) can be arbitrarily large.
The sequence A123586 gives the values of n where a(n)=0. - Robert G. Wilson v, Nov 01 2014
Is there a closed-form formula for this function? - Robert G. Wilson v, Nov 01 2014
From Robert G. Wilson v, Nov 26 2014: (Start)
The first occurrence, beginning at 0, of n is: 1, 5, 17, 65, 121, 562, 1432, 1477, 4369, 36582, 35101, 86677, 83161, 360361, 291721, 720721, 887041, 1496881, 1670761, 3931201, 3341521, 5654881, 7207201, 7761601,...
Positions where a(n)=k:
k = 0: A123586;
k = 1: 5, 7, 9, 10, 13, 15, 16, 20, 23, 25, 27, 28, 29, 33, 34, 36, 37, 38, 40, ...;
k = 2: 17, 21, 26, 31, 46, 51, 52, 55, 57, 63, 67, 73, 78, 80, 82, 91, 92, 93, 98, ...;
k = 3: 65, 85, 100, 130, 154, 164, 170, 178, 191, 195, 203, 209, 242, 282, 292, ...;
k = 4: 121, 235, 255, 257, 273, 300, 325, 341, 343, 373, 400, 495, 601, 610, 626, 666, ...;
k = 5: 562, 676, 771, 819, 1009, 1111, 1220, 1333, 1365, 1441, 1543, 1978, 1981, 2000, ...;
k = 6: 1432, 2380, 2666, 2925, 3280, 4035, 4095, 4161, 4225, 4401, 4525, 4561, 4681, ...;
k = 7: 1477, 4097, 4591, 7141, 7993, 8191, 9640, 10081, 10297, 10626, 10858, 11761, ...; etc.
(End)

Examples

			100 is a palindrome in bases 3, 7 and 9, so a(100) = 3.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Module[{p}, Table[ p = IntegerDigits[n, b]; If[p == Reverse@ p, {b, p}, Sequence @@ {}], {b, 2, Sqrt@ n}]]; Array[ Length@ f@# &, 105] (* Robert G. Wilson v, Nov 01 2014 *)
  • PARI
    a(n) = {my(nb = 0); for (b=2, sqrt(n), d = digits(n, b); nb+= (Vecrev(d) == d);); nb;} \\ Michel Marcus, Nov 05 2014

Formula

a(n) = A135551(n) - A033831(n). - Robert G. Wilson v, Nov 01 2014

Extensions

a(58) from Robert G. Wilson v, Nov 05 2014
Showing 1-10 of 10 results.