A033942 Positive integers with at least 3 prime factors (counted with multiplicity).
8, 12, 16, 18, 20, 24, 27, 28, 30, 32, 36, 40, 42, 44, 45, 48, 50, 52, 54, 56, 60, 63, 64, 66, 68, 70, 72, 75, 76, 78, 80, 81, 84, 88, 90, 92, 96, 98, 99, 100, 102, 104, 105, 108, 110, 112, 114, 116, 117, 120, 124, 125, 126, 128, 130, 132, 135, 136, 138, 140, 144
Offset: 1
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Haskell
a033942 n = a033942_list !! (n-1) a033942_list = filter ((> 2) . a001222) [1..] -- Reinhard Zumkeller, Oct 27 2011
-
Maple
with(numtheory): A033942:=n->`if`(bigomega(n)>2, n, NULL): seq(A033942(n), n=1..200); # Wesley Ivan Hurt, Jun 23 2015
-
Mathematica
Select[ Range[150], Plus @@ Last /@ FactorInteger[ # ] > 2 &] (* Robert G. Wilson v, Oct 12 2005 *) Select[Range[150],PrimeOmega[#]>2&] (* Harvey P. Dale, Jun 22 2011 *)
-
PARI
is(n)=bigomega(n)>2 \\ Charles R Greathouse IV, May 04 2013
-
Python
from sympy import factorint def ok(n): return sum(factorint(n).values()) > 2 print([k for k in range(145) if ok(k)]) # Michael S. Branicky, Sep 10 2022
-
Python
from math import isqrt from sympy import primepi, primerange def A033942(n): def f(x): return int(n+primepi(x)+sum(primepi(x//k)-a for a,k in enumerate(primerange(isqrt(x)+1)))) kmin, kmax = 1,2 while f(kmax) >= kmax: kmax <<= 1 while True: kmid = kmax+kmin>>1 if f(kmid) < kmid: kmax = kmid else: kmin = kmid if kmax-kmin <= 1: break return kmax # Chai Wah Wu, Aug 23 2024
Formula
Numbers of the form Product p_i^e_i with Sum e_i >= 3.
a(n) ~ n. - Charles R Greathouse IV, May 04 2013
Extensions
Corrected by Patrick De Geest, Jun 15 1998
Comments