cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033949 Positive integers that do not have a primitive root.

Original entry on oeis.org

8, 12, 15, 16, 20, 21, 24, 28, 30, 32, 33, 35, 36, 39, 40, 42, 44, 45, 48, 51, 52, 55, 56, 57, 60, 63, 64, 65, 66, 68, 69, 70, 72, 75, 76, 77, 78, 80, 84, 85, 87, 88, 90, 91, 92, 93, 95, 96, 99, 100, 102, 104, 105, 108, 110, 111, 112, 114, 115, 116, 117, 119, 120, 123
Offset: 1

Views

Author

Calculated by Jud McCranie

Keywords

Comments

Numbers k such that the cyclotomic polynomial Phi(k,x) is reducible over Zp for all primes p. Harrison shows that this is equivalent to k > 2 and the discriminant of Phi(k,x), A004124(k), being a square. - T. D. Noe, Nov 06 2007
The multiplicative group modulo k is non-cyclic; the complement A033948. - Wolfdieter Lang, Mar 14 2012. See A281854 for the groups. - Wolfdieter Lang, Feb 04 2017
Numbers k with the property that there exists a positive integer m with 1 < m < k-1 and m^2 == 1 (mod k). - Reinhard Muehlfeld, May 27 2014
Also, numbers k for which A000010(k) > A002322(k), or equivalently A034380(k) > 1. - Ivan Neretin, Mar 28 2015
Numbers k of the form a + b + 2*sqrt(a*b + 1) for positive integers a,b such that a*b + 1 is a square. Proof: If 1 < m < k - 1 and m^2 == 1 (mod k), take a = (m^2 - 1)/k and b = ((k - m)^2 - 1)/k. Conversely, if k = a + b + 2*sqrt(a*b + 1), take m = a + sqrt(a*b + 1). - Tor Gunston, Apr 24 2021
Seems to be A050275 without the duplicates. - Charles R Greathouse IV, Feb 09 2025

References

  • I. Niven and H. S. Zuckerman, An Introduction to the Theory of Numbers, 4th edition, page 62, Theorem 2.25.

Crossrefs

Cf. A000010, A002322, A033948 (complement), A193305 (composites with primitive root).
Column k=1 of A277915, A281854.

Programs

  • Haskell
    a033949 n = a033949_list !! (n-1)
    a033949_list = filter
                   (\x -> any ((== 1) . (`mod` x) . (^ 2)) [2 .. x-2]) [1..]
    -- Reinhard Zumkeller, Dec 10 2014
    
  • Maple
    m := proc(n) local k, r; r := 1; if n = 2 then return false fi;
    for k from 1 to n do if igcd(n,k) = 1 then r := modp(r*k,n) fi od; r end:
    select(n -> m(n) = 1, [$1..123]); # Peter Luschny, May 25 2017
  • Mathematica
    Select[Range[2,130],!IntegerQ[PrimitiveRoot[#]]&] (* Harvey P. Dale, Oct 25 2011 *)
    a[n_] := Module[{j, l = {}}, While[Length[l] CarmichaelLambda[j], AppendTo[l, j]; Break[]]]]; l[[n]]]; Array[a, 100] (* Jean-François Alcover, May 29 2018, after Alois P. Heinz's Maple code for A277915 *)
  • PARI
    is(n)=n>7 && (!isprimepower(if(n%2,n,n/2)) || n>>valuation(n,2)==1) \\ Charles R Greathouse IV, Oct 08 2016
    
  • Python
    from itertools import count, islice
    from sympy.ntheory import sqrt_mod_iter
    def A033949_gen(): # generator of terms
        return filter(lambda n:max(filter(lambda k:k 1,count(3))
    A033949_list = list(islice(A033949_gen(),30)) # Chai Wah Wu, Oct 26 2022
    
  • Python
    from sympy import primepi, integer_nthroot
    def A033949(n):
        def f(x): return int(n+1+(x>=2)+(x>=4)+sum(primepi(integer_nthroot(x,k)[0])-1 for k in range(1,x.bit_length()))+sum(primepi(integer_nthroot(x>>1,k)[0])-1 for k in range(1,x.bit_length()-1)))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m # Chai Wah Wu, Feb 24 2025
  • Sage
    [n for n in range(1,100) if not Integers(n).multiplicative_group_is_cyclic()]
    # Ralf Stephan, Mar 30 2014
    

Formula

Positive integers except 1, 2, 4 and numbers of the form p^i and 2p^i, where p is an odd prime and i >= 1.