A033987 Numbers that are divisible by at least 4 primes (counted with multiplicity).
16, 24, 32, 36, 40, 48, 54, 56, 60, 64, 72, 80, 81, 84, 88, 90, 96, 100, 104, 108, 112, 120, 126, 128, 132, 135, 136, 140, 144, 150, 152, 156, 160, 162, 168, 176, 180, 184, 189, 192, 196, 198, 200, 204, 208, 210, 216, 220, 224, 225, 228, 232, 234, 240, 243
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n=1..1000
Programs
-
Maple
with(numtheory): A033987:=n->`if`(bigomega(n)>3, n, NULL): seq(A033987(n), n=1..300); # Wesley Ivan Hurt, May 26 2015
-
Mathematica
Select[Range[300],PrimeOmega[#]>3&] (* Harvey P. Dale, Mar 20 2016 *)
-
PARI
is(n)=bigomega(n)>3 \\ Charles R Greathouse IV, May 26 2015
-
Python
from math import prod, isqrt from sympy import primerange, integer_nthroot, primepi def A033987(n): def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1))) def f(x): return int(n+primepi(x)+sum(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,i)) for i in range(2,4))) kmin, kmax = 1,2 while f(kmax) >= kmax: kmax <<= 1 while True: kmid = kmax+kmin>>1 if f(kmid) < kmid: kmax = kmid else: kmin = kmid if kmax-kmin <= 1: break return kmax # Chai Wah Wu, Aug 23 2024
Formula
Product p_i^e_i with Sum e_i >= 4.
a(n) ~ n. - Charles R Greathouse IV, Jul 11 2024
Extensions
More terms from Patrick De Geest, Jun 15 1998
Comments