A034008 a(n) = floor(2^|n-1|/2). Or: 1, 0, followed by powers of 2.
1, 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648
Offset: 0
References
- Richard P. Stanley, Enumerative Combinatorics, Vol. I, Cambridge University Press, 1997, p. 45, exercise 9.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- J.-L. Baril, Classical sequences revisited with permutations avoiding dotted pattern, Electronic Journal of Combinatorics, 18 (2011), #P178.
- Index entries for linear recurrences with constant coefficients, signature (2).
Programs
-
Maple
A034008:=n->2^(n-2): 1, 0, seq(A034008(n), n=2..50); # Wesley Ivan Hurt, Apr 12 2017
-
Mathematica
a = x/(1 - x); CoefficientList[Series[1/(1 - a^2), {x, 0, 30}], x] (* Geoffrey Critzer, Mar 28 2010 *)
-
PARI
a(n)=if(n<2,n==0,2^(n-2))
Formula
a(n) = 2^(n-2), n >= 2; a(0) = 1, a(1) = 0.
G.f.: (1-x)^2/(1-2*x).
G.f. 1/( 1 - Sum_{k >= 1} (k-1)*x^k ). - Joerg Arndt, Sep 30 2012
G.f.: x*G(0), where G(k) = 1 + 1/(1 - (1 - x)/(1 + x*(k+1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 01 2013
Inverse binomial transform of (3^n - 2*n + 1)/2 for n >= 0. - Paul Curtz, Sep 24 2019
E.g.f.: (1/4)*(3 + exp(2*x) - 2*x). - Stefano Spezia, Sep 25 2019
Extensions
Additional comments from Barry E. Williams, May 27 2000
Additional comments from Michael Somos, Jun 18 2002
Edited by M. F. Hasler, Jan 13 2015
Comments