cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 262 results. Next

A276085 Primorial base log-function: fully additive with a(p) = p#/p, where p# = A034386(p).

Original entry on oeis.org

0, 1, 2, 2, 6, 3, 30, 3, 4, 7, 210, 4, 2310, 31, 8, 4, 30030, 5, 510510, 8, 32, 211, 9699690, 5, 12, 2311, 6, 32, 223092870, 9, 6469693230, 5, 212, 30031, 36, 6, 200560490130, 510511, 2312, 9, 7420738134810, 33, 304250263527210, 212, 10, 9699691, 13082761331670030, 6, 60, 13, 30032, 2312, 614889782588491410, 7, 216, 33, 510512, 223092871, 32589158477190044730, 10
Offset: 1

Views

Author

Antti Karttunen, Aug 21 2016

Keywords

Comments

Completely additive with a(p^e) = e * A002110(A000720(p)-1).
This is a left inverse of A276086 ("primorial base exp-function"), hence the name "primorial base log-function". When the domain is restricted to the terms of A048103, this works also as a right inverse, as A276086(a(A048103(n))) = A048103(n) for all n >= 1. - Antti Karttunen, Apr 24 2022
On average, every third term is a multiple of 4. See A369001. - Antti Karttunen, May 26 2024

Crossrefs

A left inverse of A276086.
Positions of multiples of k in this sequence, for k=2, 3, 4, 5, 8, 27, 3125: A003159, A339746, A369002, A373140, A373138, A377872, A377878.
Cf. A036554 (positions of odd terms), A035263, A096268 (parity of terms).
Cf. A372575 (rgs-transform), A372576 [a(n) mod 360], A373842 [= A003415(a(n))].
Cf. A373145 [= gcd(A003415(n), a(n))], A373361 [= gcd(n, a(n))], A373362 [= gcd(A001414(n), a(n))], A373485 [= gcd(A083345(n), a(n))], A373835 [= gcd(bigomega(n), a(n))], and also A373367 and A373147 [= A003415(n) mod a(n)], A373148 [= a(n) mod A003415(n)].
Other completely additive sequences with primes p mapped to a function of p include: A001222 (with a(p)=1), A001414 (with a(p)=p), A059975 (with a(p)=p-1), A341885 (with a(p)=p*(p+1)/2), A373149 (with a(p)=prevprime(p)), A373158 (with a(p)=p#).
Cf. also A276075 for factorial base and A048675, A054841 for base-2 and base-10 analogs.

Programs

  • Mathematica
    nn = 60; b = MixedRadix[Reverse@ Prime@ Range@ PrimePi[nn + 1]]; Table[FromDigits[#, b] &@ Reverse@ If[n == 1, {0}, Function[k, ReplacePart[Table[0, {PrimePi[k[[-1, 1]]]}], #] &@ Map[PrimePi@ First@ # -> Last@ # &, k]]@ FactorInteger@ n], {n, nn}] (* Version 10.2, or *)
    f[w_List] := Total[Times @@@ Transpose@ {Map[Times @@ # &, Prime@ Range@ Range[0, Length@ w - 1]], Reverse@ w}]; Table[f@ Reverse@ If[n == 1, {0}, Function[k, ReplacePart[Table[0, {PrimePi[k[[-1, 1]]]}], #] &@ Map[PrimePi@ First@ # -> Last@ # &, k]]@ FactorInteger@ n], {n, 60}] (* Michael De Vlieger, Aug 30 2016 *)
  • PARI
    A276085(n) = { my(f = factor(n), pr=1, i=1, s=0); for(k=1, #f~, while(i <= primepi(f[k, 1])-1, pr *= prime(i); i++); s += f[k, 2]*pr); (s); }; \\ Antti Karttunen, Nov 11 2024
    
  • Python
    from sympy import primorial, primepi, factorint
    def a002110(n):
        return 1 if n<1 else primorial(n)
    def a(n):
        f=factorint(n)
        return sum(f[i]*a002110(primepi(i) - 1) for i in f)
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 22 2017

Formula

a(1) = 0; for n > 1, a(n) = a(A028234(n)) + (A067029(n) * A002110(A055396(n)-1)).
a(1) = 0, a(n) = (e1*A002110(i1-1) + ... + ez*A002110(iz-1)) when n = prime(i1)^e1 * ... * prime(iz)^ez.
Other identities.
For all n >= 0:
a(A276086(n)) = n.
a(A000040(1+n)) = A002110(n).
a(A002110(1+n)) = A143293(n).
From Antti Karttunen, Apr 24 & Apr 29 2022: (Start)
a(A283477(n)) = A283985(n).
a(A108951(n)) = A346105(n). [The latter has a similar additive formula as this sequence, but instead of primorials, uses their partial sums]
When applied to sequences where a certain subset of the divisors of n has been multiplicatively encoded with the help of A276086, this yields a corresponding number-theoretical sequence, i.e. completes their computation:
a(A319708(n)) = A001065(n) and a(A353564(n)) = A051953(n).
a(A329350(n)) = A069359(n) and a(A329380(n)) = A323599(n).
In the following group, the sum of the rhs-sequences is n [on each row, as say, A328841(n)+A328842(n)=n], because the pointwise product of the corresponding lhs-sequences is A276086:
a(A053669(n)) = A053589(n) and a(A324895(n)) = A276151(n).
a(A328571(n)) = A328841(n) and a(A328572(n)) = A328842(n).
a(A351231(n)) = A351233(n) and a(A327858(n)) = A351234(n).
a(A351251(n)) = A351253(n) and a(A324198(n)) = A351254(n).
The sum or difference of the rhs-sequences is A108951:
a(A344592(n)) = A346092(n) and a(A346091(n)) = A346093(n).
a(A346106(n)) = A346108(n) and a(A346107(n)) = A346109(n).
Here the two sequences are inverse permutations of each other:
a(A328624(n)) = A328625(n) and a(A328627(n)) = A328626(n).
a(A346102(n)) = A328622(n) and a(A346233(n)) = A328623(n).
a(A346101(n)) = A289234(n). [Self-inverse]
Other correspondences:
a(A324350(x,y)) = A324351(x,y).
a(A003961(A276086(n))) = A276154(n). [The primorial base left shift]
a(A276076(n)) = A351576(n). [Sequence reinterpreting factorial base representation as a primorial base representation]
(End)

Extensions

Name amended by Antti Karttunen, Apr 24 2022
Name simplified, the old name moved to the comments - Antti Karttunen, Jun 23 2024

A108951 Primorial inflation of n: Fully multiplicative with a(p) = p# for prime p, where x# is the primorial A034386(x).

Original entry on oeis.org

1, 2, 6, 4, 30, 12, 210, 8, 36, 60, 2310, 24, 30030, 420, 180, 16, 510510, 72, 9699690, 120, 1260, 4620, 223092870, 48, 900, 60060, 216, 840, 6469693230, 360, 200560490130, 32, 13860, 1021020, 6300, 144, 7420738134810, 19399380, 180180, 240, 304250263527210, 2520
Offset: 1

Views

Author

Paul Boddington, Jul 21 2005

Keywords

Comments

This sequence is a permutation of A025487.
And thus also a permutation of A181812, see the formula section. - Antti Karttunen, Jul 21 2014
A previous description of this sequence was: "Multiplicative with a(p^e) equal to the product of the e-th powers of all primes at most p" (see extensions), Giuseppe Coppoletta, Feb 28 2015

Examples

			a(12) = a(2^2) * a(3) = (2#)^2 * (3#) = 2^2 * 6 = 24
a(45) = (3#)^2 * (5#) = (2*3)^2 * (2*3*5) = 1080 (as 45 = 3^2 * 5).
		

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = Module[{f = FactorInteger[n], p, e}, If[Length[f]>1, Times @@ a /@ Power @@@ f, {{p, e}} = f; Times @@ (Prime[Range[PrimePi[p]]]^e)]]; a[1] = 1; Table[a[n], {n, 1, 42}] (* Jean-François Alcover, Feb 24 2015 *)
    Table[Times @@ Map[#1^#2 & @@ # &, FactorInteger[n] /. {p_, e_} /; e > 0 :> {Times @@ Prime@ Range@ PrimePi@ p, e}], {n, 42}] (* Michael De Vlieger, Mar 18 2017 *)
  • PARI
    primorial(n)=prod(i=1,primepi(n),prime(i))
    a(n)=my(f=factor(n)); prod(i=1,#f~, primorial(f[i,1])^f[i,2]) \\ Charles R Greathouse IV, Jun 28 2015
    
  • Python
    from sympy import primerange, factorint
    from operator import mul
    def P(n): return reduce(mul, [i for i in primerange(2, n + 1)])
    def a(n):
        f = factorint(n)
        return 1 if n==1 else reduce(mul, [P(i)**f[i] for i in f])
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, May 14 2017
  • Sage
    def sharp_primorial(n): return sloane.A002110(prime_pi(n))
    def p(f):
        return sharp_primorial(f[0])^f[1]
    [prod(p(f) for f in factor(n)) for n in range (1,51)]
    # Giuseppe Coppoletta, Feb 07 2015
    

Formula

Dirichlet g.f.: 1/(1-2*2^(-s))/(1-6*3^(-s))/(1-30*5^(-s))...
Completely multiplicative with a(p_i) = A002110(i) = prime(i)#. [Franklin T. Adams-Watters, Jun 24 2009; typos corrected by Antti Karttunen, Jul 21 2014]
From Antti Karttunen, Jul 21 2014: (Start)
a(1) = 1, and for n > 1, a(n) = n * a(A064989(n)).
a(n) = n * A181811(n).
a(n) = A002110(A061395(n)) * A331188(n). - [added Jan 14 2020]
a(n) = A181812(A048673(n)).
Other identities:
A006530(a(n)) = A006530(n). [Preserves the largest prime factor of n.]
A071178(a(n)) = A071178(n). [And also its exponent.]
a(2^n) = 2^n. [Fixes the powers of two.]
A067029(a(n)) = A007814(a(n)) = A001222(n). [The exponent of the least prime of a(n), that prime always being 2 for n>1, is equal to the total number of prime factors in n.]
(End)
From Antti Karttunen, Nov 19 2019: (Start)
Further identities:
a(A307035(n)) = A000142(n).
a(A003418(n)) = A181814(n).
a(A025487(n)) = A181817(n).
a(A181820(n)) = A181822(n).
a(A019565(n)) = A283477(n).
A001221(a(n)) = A061395(n).
A001222(a(n)) = A056239(n).
A181819(a(n)) = A122111(n).
A124859(a(n)) = A181821(n).
A085082(a(n)) = A238690(n).
A328400(a(n)) = A329600(n). (smallest number with the same set of distinct prime exponents)
A000188(a(n)) = A329602(n). (square root of the greatest square divisor)
A072411(a(n)) = A329378(n). (LCM of exponents of prime factors)
A005361(a(n)) = A329382(n). (product of exponents of prime factors)
A290107(a(n)) = A329617(n). (product of distinct exponents of prime factors)
A000005(a(n)) = A329605(n). (number of divisors)
A071187(a(n)) = A329614(n). (smallest prime factor of number of divisors)
A267115(a(n)) = A329615(n). (bitwise-AND of exponents of prime factors)
A267116(a(n)) = A329616(n). (bitwise-OR of exponents of prime factors)
A268387(a(n)) = A329647(n). (bitwise-XOR of exponents of prime factors)
A276086(a(n)) = A324886(n). (prime product form of primorial base expansion)
A324580(a(n)) = A324887(n).
A276150(a(n)) = A324888(n). (digit sum in primorial base)
A267263(a(n)) = A329040(n). (number of distinct nonzero digits in primorial base)
A243055(a(n)) = A329343(n).
A276088(a(n)) = A329348(n). (least significant nonzero digit in primorial base)
A276153(a(n)) = A329349(n). (most significant nonzero digit in primorial base)
A328114(a(n)) = A329344(n). (maximal digit in primorial base)
A062977(a(n)) = A325226(n).
A097248(a(n)) = A283478(n).
A324895(a(n)) = A324896(n).
A324655(a(n)) = A329046(n).
A327860(a(n)) = A329047(n).
A329601(a(n)) = A329607(n).
(End)
a(A181815(n)) = A025487(n), and A319626(a(n)) = A329900(a(n)) = n. - Antti Karttunen, Dec 29 2019
From Antti Karttunen, Jul 09 2021: (Start)
a(n) = A346092(n) + A346093(n).
a(n) = A346108(n) - A346109(n).
a(A342012(n)) = A004490(n).
a(A337478(n)) = A336389(n).
A336835(a(n)) = A337474(n).
A342002(a(n)) = A342920(n).
A328571(a(n)) = A346091(n).
A328572(a(n)) = A344592(n).
(End)
Sum_{n>=1} 1/a(n) = A161360. - Amiram Eldar, Aug 04 2022

Extensions

More terms computed by Antti Karttunen, Jul 21 2014
The name of the sequence was changed for more clarity, in accordance with the above remark of Franklin T. Adams-Watters (dated Jun 24 2009). It is implicitly understood that a(n) is then uniquely defined by completely multiplicative extension. - Giuseppe Coppoletta, Feb 28 2015
Name "Primorial inflation" (coined by Matthew Vandermast in A181815) prefixed to the name by Antti Karttunen, Jan 14 2020

A319626 Primorial deflation of n (numerator): Let f be the completely multiplicative function over the positive rational numbers defined by f(p) = A034386(p) for any prime number p; f constitutes a permutation of the positive rational numbers; let g be the inverse of f; for any n > 0, a(n) is the numerator of g(n).

Original entry on oeis.org

1, 2, 3, 4, 5, 3, 7, 8, 9, 10, 11, 6, 13, 14, 5, 16, 17, 9, 19, 20, 21, 22, 23, 12, 25, 26, 27, 28, 29, 5, 31, 32, 33, 34, 7, 9, 37, 38, 39, 40, 41, 21, 43, 44, 15, 46, 47, 24, 49, 50, 51, 52, 53, 27, 55, 56, 57, 58, 59, 10, 61, 62, 63, 64, 65, 33, 67, 68, 69
Offset: 1

Views

Author

Rémy Sigrist, Sep 25 2018

Keywords

Comments

See A319627 for the corresponding denominators.
The restriction of f to the natural numbers corresponds to A108951.
The function g is completely multiplicative over the positive rational numbers with g(2) = 2 and g(q) = q/p for any pair (p, q) of consecutive prime numbers.
The ratio A319626(n)/A319627(n) can be viewed as a "primorial deflation" of n (see also A329900), with the inverse operation being n = A108951(A319626(n)) / A108951(A319627(n)), where A319627(k) = 1 for all k in A025487. - Daniel Suteu, Dec 29 2019

Examples

			f(21/5) = (2*3) * (2*3*5*7) / (2*3*5) = 42, hence g(42) = 21/5 and a(42) = 21.
		

Crossrefs

A left inverse of A108951. Coincides with A329900 on A025487.
Cf. A006530, A053585, A064989, A181815, A307035, A319627, A319630, A329902, A330749, A330750 (rgs-transform), A330751 (ordinal transform).

Programs

  • Mathematica
    Array[#1/GCD[#1, #2] & @@ {#, Apply[Times, Map[If[#1 <= 2, 1, NextPrime[#1, -1]]^#2 & @@ # &, FactorInteger[#]]]} &, 120] (* Michael De Vlieger, Aug 27 2020 *)
  • PARI
    a(n) = my (f=factor(n)); numerator(prod(i=1, #f~, my (p=f[i,1]); (p/if (p>2, precprime(p-1), 1))^f[i,2]))

Formula

a(n) = n / gcd(n, A064989(n)) = n / A330749(n).
a(n) <= n with equality iff n belongs to A319630.
A006530(a(n)) = A006530(n).
A053585(a(n)) = A053585(n).
From Antti Karttunen, Dec 29 2019: (Start)
a(A108951(n)) = n.
a(A025487(n)) = A329900(A025487(n)) = A181815(n).
Many of the formulas given in A329900 apply here as well:
a(n!) = A307035(n), a(A002182(n)) = A329902(n), and so on.
(End)

Extensions

"Primorial deflation" prefixed to the name by Antti Karttunen, Dec 29 2019

A067027 Numbers n such that (prime(n)# + 4)/2 is a prime, where x# is the primorial A034386(x).

Original entry on oeis.org

1, 2, 3, 4, 6, 10, 11, 12, 15, 17, 29, 48, 63, 77, 88, 187, 190, 338, 1133, 1311, 1832, 2782, 2907, 3180, 3272, 5398, 17530
Offset: 1

Views

Author

Labos Elemer, Dec 29 2001

Keywords

Comments

Numbers n such that [A002110(n)/2]+2 is prime.
These primes are products of consecutive odd primes plus 2: 2+[3.5.7.....p(n)] if n is here.
a(19)-a(22) are Fermat and Lucas PRPs. (prime(2782)# + 4)/2 has 10865 digits. PFGW Version 1.2.0 for Windows [FFT v23.8] Primality testing (p(2782)#+4)/2 [N-1/N+1, Brillhart-Lehmer-Selfridge] Running N-1 test using base 5 Running N+1 test using discriminant 13, base 1+sqrt(13) (p(2782)#+4)/2 is Fermat and Lucas PRP! - Jason Earls, Dec 12 2006
a(28) > 25000. - Robert Price, Sep 29 2017

Crossrefs

Programs

Extensions

More terms from Robert G. Wilson v, Dec 30 2001
a(19)-a(22) from Jason Earls, Dec 12 2006
a(23) from Ray Chandler, Jun 16 2013
a(24)-a(27) from Robert Price, Sep 29 2017

A067026 (Prime(n)# - 4)/2 is prime, where x# is the primorial A034386(x).

Original entry on oeis.org

3, 4, 5, 6, 7, 8, 9, 11, 13, 16, 20, 27, 39, 83, 103, 122, 129, 145, 279, 393, 608, 798, 929, 1164, 1266, 1491, 2043, 3276, 3426, 7119, 15711, 18424
Offset: 1

Views

Author

Labos Elemer, Dec 29 2001

Keywords

Comments

n such that A002110(n)/2 - 2 is prime.
a(33) > 25000. - Robert Price, Sep 29 2017

Crossrefs

Programs

  • Mathematica
    p = 1; Do[p = p*Prime[n]; If[PrimeQ[(p - 4)/2], Print[n]], {n, 1, 400} ]
    Flatten[Position[Rest[FoldList[Times,1,Prime[Range[2100]]]],?(PrimeQ[(#-4)/2]&)]] (* _Harvey P. Dale, Nov 22 2014 *)

Extensions

More terms from Robert G. Wilson v, Dec 30 2001
a(21)-a(27) from Ray Chandler, Jun 16 2013
a(28)-a(32) from Robert Price, Sep 29 2017

A319627 Primorial deflation of n (denominator): Let f be the completely multiplicative function over the positive rational numbers defined by f(p) = A034386(p) for any prime number p; f constitutes a permutation of the positive rational numbers; let g be the inverse of f; for any n > 0, a(n) is the denominator of g(n).

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 5, 1, 4, 3, 7, 1, 11, 5, 2, 1, 13, 2, 17, 3, 10, 7, 19, 1, 9, 11, 8, 5, 23, 1, 29, 1, 14, 13, 3, 1, 31, 17, 22, 3, 37, 5, 41, 7, 4, 19, 43, 1, 25, 9, 26, 11, 47, 4, 21, 5, 34, 23, 53, 1, 59, 29, 20, 1, 33, 7, 61, 13, 38, 3, 67, 1, 71, 31, 6
Offset: 1

Views

Author

Rémy Sigrist, Sep 25 2018

Keywords

Comments

See A319626 for the corresponding numerators and additional comments.

Examples

			f(21/5) = (2*3) * (2*3*5*7) / (2*3*5) = 42, hence g(42) = 21/5 and a(42) = 5.
		

Crossrefs

Cf. A025487 (positions of 1's), A064989, A329900, A358217 [= bigomega(a(n))].
Cf. A319626 (numerators, see comments there).
Cf. also A307035, A337377, A348990 [= a(A003961(n))], A349169 (odd numbers k such that A348993(k) = a(k)), A354365/A354366.

Programs

  • Mathematica
    Array[#2/GCD[#1, #2] & @@ {#, Apply[Times, Map[If[#1 <= 2, 1, NextPrime[#1, -1]]^#2 & @@ # &, FactorInteger[#]]]} &, 120] (* Michael De Vlieger, Aug 27 2020 *)
  • PARI
    a(n) = my (f=factor(n)); denominator(prod(i=1, #f~, my (p=f[i,1]); (p/if (p>2, precprime(p-1), 1))^f[i,2]))

Formula

a(n) = A064989(n) / gcd(n, A064989(n)).
a(n) = 1 iff n belongs to A025487.

Extensions

"Primorial deflation" prefixed to the name by Antti Karttunen, Apr 29 2022

A373158 Fully additive with a(p) = p# for prime p, where x# is the primorial A034386(x).

Original entry on oeis.org

0, 2, 6, 4, 30, 8, 210, 6, 12, 32, 2310, 10, 30030, 212, 36, 8, 510510, 14, 9699690, 34, 216, 2312, 223092870, 12, 60, 30032, 18, 214, 6469693230, 38, 200560490130, 10, 2316, 510512, 240, 16, 7420738134810, 9699692, 30036, 36, 304250263527210, 218, 13082761331670030, 2314, 42, 223092872, 614889782588491410, 14
Offset: 1

Views

Author

Antti Karttunen, May 27 2024

Keywords

Comments

Completely additive with a(p^e) = e * A002110(A000720(p)).

Crossrefs

Programs

  • PARI
    A373158(n) = { my(f=factor(n)); sum(i=1, #f~, f[i, 2]*prod(i=1,primepi(f[i, 1]),prime(i))); }; \\ corrected Jun 25 2024

Formula

From Antti Karttunen, Jun 25 2024, Oct 28 2024: (Start)
a(n) = A276085(A003961(n)).
For n >= 1, a(A000040(n)) = A002110(n), a(A002110(n)) = A060389(n).
(End)

Extensions

Data [first incorrect term was at a(8)] and the faulty PARI-program corrected by Antti Karttunen, Jun 25 2024

A140294 Numbers k such that k!/k# + 1 is prime, where k# is the primorial function (A034386).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 8, 14, 20, 26, 34, 56, 104, 153, 182, 194, 217, 230, 280, 281, 462, 463, 529, 1445, 2515, 3692, 6187, 6851, 13917, 17258, 48934, 83515, 96835
Offset: 1

Views

Author

Cino Hilliard, May 25 2008

Keywords

Comments

96835 is a term of the sequence, but its rank is not currently known. - Serge Batalov, Feb 06 2015
If k is a prime and k is a member, then k-1 is also a member, and k!/k# + 1 is the same as (k-1)!/(k-1)# + 1. See A049420. - Jeppe Stig Nielsen, Aug 12 2024
All k up to 10^5 were resolved by PrimeGrid administrator "Stream" (Roman Trunov) who found a(32) and found the position of term mentioned by Batalov above (it is a(33)). - Jeppe Stig Nielsen, Jul 13 2025

Examples

			8!/8# + 1 = 40320/210 + 1 = 193, a prime.
		

Crossrefs

Programs

  • Maple
    A140294 := proc(n) local L, p, s, i; L := 1;
    for p in select(isprime, [$2..iquo(n,2)]) do
        s := add(i,i=convert(n,base,p)); L := L*p^((n-s)/(p-1)-1) od;
    `if`(isprime(L+1), n, NULL) end:
    seq(A140294(i), i=0..104); # Peter Luschny, Mar 27 2013
  • Mathematica
    Primorial[p_] := Times @@ Prime[Range[PrimePi[p]]]; Select[Range[0,194], PrimeQ[#!/Primorial[#] + 1] &] (* T. D. Noe, Mar 27 2013 *)
  • PARI
    is(n)=ispseudoprime(n!/prod(i=1,primepi(n),prime(i))+1) \\ Charles R Greathouse IV, Mar 27 2013
    
  • PFGW
    ABC2 $a!/$a#+1
    a: from 1 to 3000

Extensions

a(17)-a(25) from Charles R Greathouse IV, Mar 27 2013
a(26)-a(27) from Giovanni Resta, Mar 28 2013
a(28) from Charles R Greathouse IV, Mar 28 2013
a(29) from Giovanni Resta, Apr 02 2013
a(30) from Roger Karpin, Nov 29 2014
a(31) from Roger Karpin, Jun 08 2015
a(32)-a(33) communicated by Jeppe Stig Nielsen, Jul 13 2025

A373985 a(n) = gcd(A108951(n), A373158(n)), where A108951 is fully multiplicative and A373158 is fully additive with a(p) = p# for prime p, where x# is the primorial A034386(x).

Original entry on oeis.org

1, 2, 6, 4, 30, 4, 210, 2, 12, 4, 2310, 2, 30030, 4, 36, 8, 510510, 2, 9699690, 2, 36, 4, 223092870, 12, 60, 4, 18, 2, 6469693230, 2, 200560490130, 2, 12, 4, 60, 16, 7420738134810, 4, 12, 12, 304250263527210, 2, 13082761331670030, 2, 6, 4, 614889782588491410, 2, 420, 2, 36, 2, 32589158477190044730, 4, 180, 24, 36, 4
Offset: 1

Views

Author

Antti Karttunen, Jun 25 2024

Keywords

Crossrefs

Programs

  • PARI
    A373985(n) = { my(f=factor(n),m=1,s=0); for(i=1, #f~, my(x=prod(i=1,primepi(f[i, 1]),prime(i))); s += f[i, 2]*x; m *= x^f[i, 2]); gcd(m,s); };

Formula

a(n) = gcd(A373158(n), A373984(n)).
a(n) = A108951(n) / A373987(n).
For n >= 2, a(n) = A373158(n) / A373986(n).
For n >= 1, a(A000040(n)) = A002110(n).

A045948 a(n) = A003418(n)/A034386(n).

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 4, 12, 12, 12, 12, 12, 12, 12, 24, 24, 24, 24, 24, 24, 24, 24, 24, 120, 120, 360, 360, 360, 360, 360, 720, 720, 720, 720, 720, 720, 720, 720, 720, 720, 720, 720, 720, 720, 720, 720, 720, 5040, 5040, 5040, 5040, 5040, 5040, 5040, 5040, 5040
Offset: 1

Views

Author

Keywords

Examples

			n=11: lcm(1..11) = 27720 = 8*9*5*7*11 = 2310*12. A034386(11)=2310, so the quotient is 12. Thus a(11) = 12.
		

Crossrefs

Programs

  • Mathematica
    Table[Exp[Sum[MangoldtLambda[n], {n, 1, m}]]/ Product[x, {x, Prime[Range[PrimePi[m]]]}], {m, 1, 57}] (* Fred Daniel Kline, Apr 02 2015 *)
  • PARI
    a(n)=lcm([1..n])/prod(i=1,primepi(n),prime(i)) \\ Charles R Greathouse IV, Apr 02 2015; corrected by Michel Marcus, Dec 26 2020
Showing 1-10 of 262 results. Next