cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034839 Triangular array formed by taking every other term of each row of Pascal's triangle.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 6, 1, 1, 10, 5, 1, 15, 15, 1, 1, 21, 35, 7, 1, 28, 70, 28, 1, 1, 36, 126, 84, 9, 1, 45, 210, 210, 45, 1, 1, 55, 330, 462, 165, 11, 1, 66, 495, 924, 495, 66, 1, 1, 78, 715, 1716, 1287, 286, 13
Offset: 0

Views

Author

Keywords

Comments

Number of compositions of n having k parts greater than 1. Example: T(5,2)=5 because we have 3+2, 2+3, 2+2+1, 2+1+2 and 1+2+2. Number of binary words of length n-1 having k runs of consecutive 1's. Example: T(5,2)=5 because we have 1010, 1001, 0101, 1101 and 1011. - Emeric Deutsch, Mar 30 2005
From Gary W. Adamson, Oct 17 2008: (Start)
Received from Herb Conn:
Let T = tan x, then
tan x = T
tan 2x = 2T / (1 - T^2)
tan 3x = (3T - T^3) / (1 - 3T^2)
tan 4x = (4T - 4T^3) / (1 - 6T^2 + T^4)
tan 5x = (5T - 10T^3 + T^5) / (1 - 10T^2 + 5T^4)
tan 6x = (6T - 20T^3 + 6T^5) / (1 - 15T^2 + 15T^4 - T^6)
tan 7x = (7T - 35T^3 + 21T^5 - T^7) / (1 - 21T^2 + 35T^4 - 7T^6)
tan 8x = (8T - 56T^3 + 56T^5 - 8T^7) / (1 - 28T^2 + 70T^4 - 28T^6 + T^8)
tan 9x = (9T - 84T^3 + 126T^5 - 36T^7 + T^9) / (1 - 36 T^2 + 126T^4 - 84T^6 + 9T^8)
... To get the next one in the series, (tan 10x), for the numerator add:
9....84....126....36....1 previous numerator +
1....36....126....84....9 previous denominator =
10..120....252...120...10 = new numerator
For the denominator add:
......9.....84...126...36...1 = previous numerator +
1....36....126....84....9.... = previous denominator =
1....45....210...210...45...1 = new denominator
...where numerators = A034867, denominators = A034839
(End)
Triangle, with zeros omitted, given by (1, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Dec 12 2011
The row (1,66,495,924,495,66,1) plays a role in expansions of powers of the Dedekind eta function. See the Chan link, p. 534. - Tom Copeland, Dec 12 2016
Binomial(n,2k) is also the number of permutations avoiding both 123 and 132 with k ascents, i.e., positions with w[i]Lara Pudwell, Dec 19 2018
Coefficients in expansion of ((x-1)^n+(x+1)^n)/2 or ((x-i)^n+(x+i)^n)/2 with alternating sign. - Eugeniy Sokol, Sep 20 2020
Number of permutations of length n avoiding simultaneously the patterns 213 and 312 with the maximum number of non-overlapping descents equal k (equivalently, with the maximum number of non-overlapping ascents equal k). An ascent (resp., descent) in a permutation a(1)a(2)...a(n) is position i such that a(i) < a(i+1) (resp., a(i) > a(i+1)). - Tian Han, Nov 16 2023

Examples

			Triangular array begins:
  1
  1
  1  1
  1  3
  1  6  1
  1 10  5
  1 15 15 1
  ...
cosh(4x) = (cosh x)^5 + 10 (cosh x)^3 (sinh x)^2 + 5 (cosh x) (sinh x)^4, so row 4 is (1,10,5). See Mathematica program. - _Clark Kimberling_, Aug 03 2024
		

Crossrefs

Programs

  • Magma
    /* As a triangle */ [[Binomial(n,2*k):k in [0..Floor(n/2)]] : n in [0..10]]; // G. C. Greubel, Feb 23 2018
  • Maple
    for n from 0 to 13 do seq(binomial(n,2*k),k=0..floor(n/2)) od;# yields sequence in triangular form; # Emeric Deutsch, Mar 30 2005
  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 12;
    u[n_, x_] := u[n - 1, x] + x*v[n - 1, x]
    v[n_, x_] := u[n - 1, x] + v[n - 1, x]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]  (* A034839 as a triangle *)
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]  (* A034867 as a triangle *)
    (* Clark Kimberling, Feb 18 2012 *)
    Table[Binomial[n, k], {n, 0, 13}, {k, 0, Floor[n, 2], 2}] // Flatten (* Michael De Vlieger, Dec 13 2016 *)
    (* The triangle gives coefficients for cosh(nx) as a linear combination of products (cosh(x)^h)*(sinh(x)^k) *)
    Column[Table[TrigExpand[Cosh[n  x]], {n, 0, 10}]]
    (* Clark Kimberling, Aug 03 2024 *)
  • PARI
    for(n=0,15, for(k=0,floor(n/2), print1(binomial(n, 2*k), ", "))) \\ G. C. Greubel, Feb 23 2018
    

Formula

E.g.f.: exp(x)*cosh(x*sqrt(y)). - Vladeta Jovovic, Mar 20 2005
From Emeric Deutsch, Mar 30 2005: (Start)
T(n, k) = binomial(n, 2*k), for n >= 0 and k = 0, 1, ..., floor(n/2).
G.f.: (1-z)/((1-z)^2 - t*z^2). (End)
O.g.f. for column no. k is (1/(1-x))*(x/(1-x))^(2*k), k >= 0 [from the g.f. given in the preceding formula]. - Wolfdieter Lang, Jan 18 2013
From Peter Bala, Jul 14 2015: (Start)
Stretched Riordan array ( 1/(1 - x ), x^2/(1 - x)^2 ) in the terminology of Corsani et al.
Denote this array by P. Then P * A007318 = A201701.
P * transpose(P) is A119326 read as a square array.
Let Q denote the array ( (-1)^k*binomial(2*n,k) )n,k>=0. Q is a signed version of A034870. Then Q*P = the identity matrix, that is, Q is a left-inverse array of P (see Corsani et al., p. 111).
P * A034870 = A080928. (End)
Even rows are A086645. An aerated version of this array is A099174 with each diagonal divided by the first element of the diagonal, the double factorials A001147. - Tom Copeland, Dec 12 2015