cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A010879 Final digit of n.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0
Offset: 0

Views

Author

Keywords

Comments

Also decimal expansion of 137174210/1111111111 = 0.1234567890123456789012345678901234... - Jason Earls, Mar 19 2001
In general the base k expansion of A062808(k)/A048861(k) (k>=2) will produce the numbers 0,1,2,...,k-1 repeated with period k, equivalent to the sequence n mod k. The k-digit number in base k 123...(k-1)0 (base k) expressed in decimal is A062808(k), whereas A048861(k) = k^k-1. In particular, A062808(10)/A048861(10)=1234567890/9999999999=137174210/1111111111.
a(n) = n^5 mod 10. - Zerinvary Lajos, Nov 04 2009

Crossrefs

Cf. A008959, A008960, A070514. - Doug Bell, Jun 15 2015
Partial sums: A130488. Other related sequences A130481, A130482, A130483, A130484, A130485, A130486, A130487.

Programs

Formula

a(n) = n mod 10.
Periodic with period 10.
From Hieronymus Fischer, May 31 and Jun 11 2007: (Start)
Complex representation: a(n) = 1/10*(1-r^n)*sum{1<=k<10, k*product{1<=m<10,m<>k, (1-r^(n-m))}} where r=exp(Pi/5*i) and i=sqrt(-1).
Trigonometric representation: a(n) = (256/5)^2*(sin(n*Pi/10))^2 * sum{1<=k<10, k*product{1<=m<10,m<>k, (sin((n-m)*Pi/10))^2}}.
G.f.: g(x) = (Sum_{k=1..9} k*x^k)/(1-x^10) = -x*(1 +2*x +3*x^2 +4*x^3 +5*x^4 +6*x^5 +7*x^6 +8*x^7 +9*x^8) / ( (x-1) *(1+x) *(x^4+x^3+x^2+x+1) *(x^4-x^3+x^2-x+1) ).
Also: g(x) = x*(9*x^10-10*x^9+1)/((1-x^10)*(1-x)^2).
a(n) = n mod 2+2*(floor(n/2)mod 5) = A000035(n) + 2*A010874(A004526(n)).
Also: a(n) = n mod 5+5*(floor(n/5)mod 2) = A010874(n)+5*A000035(A002266(n)). (End)
a(n) = 10*{n/10}, where {x} means fractional part of x. - Enrique Pérez Herrero, Jul 30 2009
a(n) = n - 10*A059995(n). - Reinhard Zumkeller, Jul 26 2011
a(n) = n^k mod 10, for k > 0, where k mod 4 = 1. - Doug Bell, Jun 15 2015

Extensions

Formula section edited for better readability by Hieronymus Fischer, Jun 13 2012

A036663 Decimal expansion of 1/98019801.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 2, 0, 2, 0, 3, 0, 4, 0, 4, 0, 4, 0, 5, 0, 6, 0, 6, 0, 6, 0, 7, 0, 8, 0, 8, 0, 8, 0, 9, 1, 0, 1, 0, 1, 0, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 4, 1, 4, 1, 4, 1, 5, 1, 6, 1, 6, 1, 6, 1, 7, 1, 8, 1, 8, 1, 8, 1, 9, 2, 0, 2, 0, 2, 0, 2, 1, 2, 2, 2, 2, 2, 2, 2, 3, 2, 4, 2
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{0,0,0,0,0,0,0},RealDigits[1/98019801 ,10,120][[1]]] (* Harvey P. Dale, Jul 01 2019 *)

A036664 Decimal expansion of 1/980198019801.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 3, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 5, 0, 6, 0, 6, 0, 6, 0, 6, 0, 6, 0, 7, 0, 8, 0, 8, 0, 8, 0, 8, 0, 8, 0, 9, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 5, 1, 6, 1
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Join[PadRight[{},11,0],RealDigits[1/980198019801,10,120][[1]]] (* Harvey P. Dale, Jul 28 2023 *)

A036665 Decimal expansion of 1/9801980198019801.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 3, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 5, 0, 6, 0, 6, 0, 6, 0, 6, 0, 6, 0, 6, 0, 6, 0, 7, 0, 8, 0, 8, 0, 8, 0, 8, 0, 8, 0, 8, 0, 8, 0, 9, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 2, 1
Offset: 0

Views

Author

Keywords

Crossrefs

A227093 Decimal expansion of 1/9899.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 2, 0, 3, 0, 5, 0, 8, 1, 3, 2, 1, 3, 4, 5, 5, 9, 0, 4, 6, 3, 6, 8, 3, 2, 0, 0, 3, 2, 3, 2, 6, 4, 9, 7, 6, 2, 6, 0, 2, 2, 8, 3, 0, 5, 8, 8, 9, 4, 8, 3, 7, 8, 6, 2, 4, 1, 0, 3, 4, 4, 4, 7, 9, 2, 4, 0, 3, 2, 7, 3, 0, 5, 7, 8, 8, 4, 6, 3, 4, 8, 1, 1, 5, 9, 7, 1, 3, 1, 0, 2, 3, 3, 3, 5, 6, 9, 0, 4, 7
Offset: 0

Views

Author

Roland Kneer, Jul 01 2013

Keywords

Comments

Group the terms 2 by 2 to get the first 11 Fibonacci numbers (A000045): 00 01 01 02 03 05 08 13 21 34 55 (89, 144, 233, ...).

Examples

			0.00010102030508132134559046368320032326497626022830588...
		

Crossrefs

Programs

  • Maple
    Digits := 140; evalf(1/9899);
  • Mathematica
    First[RealDigits[1/9899, 10, 100, -1]] (* Paolo Xausa, Jun 16 2024 *)

Formula

Equals Sum_{i>=0} Fibonacci(i)/100^(i+1).

A384627 Decimal expansion of 1/998001.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 3, 0, 0, 4, 0, 0, 5, 0, 0, 6, 0, 0, 7, 0, 0, 8, 0, 0, 9, 0, 1, 0, 0, 1, 1, 0, 1, 2, 0, 1, 3, 0, 1, 4, 0, 1, 5, 0, 1, 6, 0, 1, 7, 0, 1, 8, 0, 1, 9, 0, 2, 0, 0, 2, 1, 0, 2, 2, 0, 2, 3, 0, 2, 4, 0, 2, 5, 0, 2, 6, 0, 2, 7, 0, 2, 8, 0, 2, 9
Offset: 0

Views

Author

Paolo Xausa, Jun 05 2025

Keywords

Comments

The decimals of this constant contain every 3-digit number, from 000 to 999, in order, except for 998.
Periodic with period 2997.

Examples

			0.0000010020030040050060070080090100110120130140150160170...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[1/999^2, 10, 100, -1]]

Formula

Equals 1/(999^2).
Showing 1-6 of 6 results.