cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 29 results. Next

A050620 Quotients arising from sequence A035014.

Original entry on oeis.org

2, 11, 43, 209, 1042, 6771, 26823, 130599, 651237, 3255306, 21158903, 83821639, 408121757, 2035115566, 13224589033, 52388661704, 331370112102, 1691563962301, 6567827879588, 41430886596044, 211450306579272, 1059399469695886, 5298071316879193, 20530429091056784
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1999

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if (n==1, 2, a(n-1)/2 + 5^(n-1)*(4-(a(n-1) % 2))/2);

Formula

a(n) = a(n-1)/2 + 5^(n-1)*(4-[a(n-1) mod 2])/2. - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Jun 17 2001
a(n) = A035014(n)/2^n. - Michel Marcus, Apr 07 2017

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Jun 17 2001
More terms from Michel Marcus, Apr 07 2017

A241687 Numbers k such that A035014(k) begins with a 3.

Original entry on oeis.org

3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 16, 19, 24, 27, 28, 30, 31, 32, 34, 35, 36, 37, 38, 39, 41, 42, 44, 46, 47, 51, 53, 55, 56, 59, 61, 63, 64, 65, 67, 68, 69, 71, 72, 76, 82, 83, 84, 85, 87, 89, 92, 93, 96, 97, 99, 100, 102, 104, 105, 106, 109, 111, 113, 114
Offset: 1

Views

Author

J. Lowell, Apr 27 2014

Keywords

Comments

Numbers k such that A023402(k) = 3.

Examples

			3 is a term of this sequence because A035014(3) = 344 begins with a 3.
		

Crossrefs

Programs

  • PARI
    lista(nn) = {my(v=vector(nn), list=List()); v[1] = 4; for (n=2, nn, v[n] = v[n-1] + 10^(n-1)*(4-(v[n-1]/2^(n-1) % 2)); if (v[n]\10^(n-1) == 3, listput(list, n));); Vec(list);} \\ Michel Marcus, Feb 27 2022

Extensions

More terms from Jon E. Schoenfield, May 05 2014

A241672 Numbers k such that A035014(k) begins with a 4.

Original entry on oeis.org

1, 2, 6, 11, 15, 17, 18, 20, 21, 22, 23, 25, 26, 29, 33, 40, 43, 45, 48, 49, 50, 52, 54, 57, 58, 60, 62, 66, 70, 73, 74, 75, 77, 78, 79, 80, 81, 86, 88, 90, 91, 94, 95, 98, 101, 103, 107, 108, 110, 112, 115, 117, 118, 120, 123, 124, 126, 127, 128, 129, 131, 136, 138, 139, 140, 143, 144, 145, 146
Offset: 1

Views

Author

J. Lowell, Apr 26 2014

Keywords

Comments

A023402(n) = 4 for numbers in the sequence, 3 for numbers not in the sequence.

Examples

			3 is not in the sequence because A035014(3) begins with a 3.
		

Crossrefs

Cf. A035014, A023402, A241687 (complement).

Extensions

More terms from R. J. Mathar, May 02 2014

A050621 Smallest n-digit number divisible by 2^n.

Original entry on oeis.org

2, 12, 104, 1008, 10016, 100032, 1000064, 10000128, 100000256, 1000000512, 10000001024, 100000002048, 1000000004096, 10000000008192, 100000000016384, 1000000000032768, 10000000000065536, 100000000000131072
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1999

Keywords

Comments

Quotients arising from this sequence give A034478 ((5^(n-1)+1)/2).

Crossrefs

Programs

Formula

a(n) = 10^(n-1) + 2^(n-1).
G.f.: Q(0) where Q(k)= 1 + 5^k/(1 - 2*x/(2*x + 5^k/Q(k+1) )); (continued fraction ). - Sergei N. Gladkovskii, Apr 10 2013
G.f.: 2*x*(1-6*x)/((1-2*x)*(1-10*x)). - Vincenzo Librandi, Sep 12 2014
a(n) = 12*a(n-1) - 20*a(n-2) for n>1. - Vincenzo Librandi, Sep 12 2014

A050622 Numbers m that are divisible by 2^k, where k is the digit length of m.

Original entry on oeis.org

2, 4, 6, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 104, 112, 120, 128, 136, 144, 152, 160, 168, 176, 184, 192, 200, 208, 216, 224, 232, 240, 248, 256, 264, 272, 280, 288, 296, 304, 312, 320, 328, 336, 344, 352, 360
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1999

Keywords

Comments

The number of terms of length k is equal to (9*5^(k-1) - 1)/2. - Bernard Schott, Apr 06 2020

Crossrefs

Programs

  • Maple
    seq(seq(j*2^k, j=(5^(k-1)+1)/2 .. 5^k-1),k=1..3); # Robert Israel, Apr 05 2020
  • Mathematica
    Select[Range[360], IntegerQ[#/2^IntegerLength[#]] &] (* Jayanta Basu, May 25 2013 *)
  • PARI
    isok(n) = n % (2^#Str(n)) == 0; \\ Michel Marcus, Sep 17 2015

A053312 a(n) contains n digits (either '1' or '2') and is divisible by 2^n.

Original entry on oeis.org

2, 12, 112, 2112, 22112, 122112, 2122112, 12122112, 212122112, 1212122112, 11212122112, 111212122112, 1111212122112, 11111212122112, 211111212122112, 1211111212122112, 11211111212122112, 111211111212122112, 2111211111212122112, 12111211111212122112
Offset: 1

Views

Author

Henry Bottomley, Mar 06 2000

Keywords

Comments

Corresponding quotients a(n) / 2^n are in A126933. - Bernard Schott, Mar 15 2023

Examples

			a(5) = 22112 since 22112 = 2^5 * 691 and 22112 contains 5 digits.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=1, 2, (t-> parse(
          cat(`if`(irem(t, 2^n)=0, 2, 1), t)))(a(n-1)))
        end:
    seq(a(n), n=1..20);  # Alois P. Heinz, Feb 02 2025
  • Mathematica
    Select[Flatten[Table[FromDigits/@Tuples[{1,2},n],{n,20}]],Divisible[ #,2^IntegerLength[#]]&] (* Harvey P. Dale, Jul 01 2019 *)
    RecurrenceTable[{a[1]==2, a[n]==a[n-1]+10^(n-1)(2-Mod[a[n-1]/2^(n-1),2])}, a[n], {n, 1, 20}] (* Paul C Abbott, Feb 03 2025 *)
  • Python
    from itertools import count, islice
    def A053312_gen(): # generator of terms
        a = 0
        for n in count(0):
            yield (a:=a+(10**n if (a>>n)&1 else 10**n<<1))
    A053312_list = list(islice(A053312_gen(),20)) # Chai Wah Wu, Mar 15 2023

Formula

a(n) = a(n-1) + 10^(n-1)*(2-[a(n-1)/2^(n-1) mod 2]), i.e., a(n) ends with a(n-1); if the (n-1)-th term is divisible by 2^n then the n-th term begins with a 2; if not, then the n-th term begins with a 1.

A023402 If any power of 2 ends with k 3's and 4's, they must be the first k terms of this sequence in reverse order.

Original entry on oeis.org

4, 4, 3, 3, 3, 4, 3, 3, 3, 3, 4, 3, 3, 3, 4, 3, 4, 4, 3, 4, 4, 4, 4, 3, 4, 4, 3, 3, 4, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 4, 3, 3, 4, 3, 4, 3, 3, 4, 4, 4, 3, 4, 3, 4, 3, 3, 4, 4, 3, 4, 3, 4, 3, 3, 3, 4, 3, 3, 3, 4, 3, 3, 4, 4, 4, 3, 4, 4, 4, 4, 4, 3, 3, 3, 3, 4, 3, 4, 3, 4, 4, 3, 3, 4, 4, 3, 3, 4, 3, 3, 4, 3, 4, 3, 3, 3, 4, 4
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A035014.

A053318 a(n) contains n digits (either '2' or '7') and is divisible by 2^n.

Original entry on oeis.org

2, 72, 272, 2272, 22272, 222272, 7222272, 27222272, 727222272, 2727222272, 72727222272, 772727222272, 7772727222272, 77772727222272, 277772727222272, 2277772727222272, 72277772727222272, 272277772727222272
Offset: 1

Views

Author

Henry Bottomley, Mar 06 2000

Keywords

Crossrefs

Programs

  • Maple
    A[1]:= 2:
    for n from 2 to 100 do
       if A[n-1] mod 2^n = 0 then A[n]:= A[n-1]+2*10^(n-1)
       else A[n]:= A[n-1]+7*10^(n-1)
         fi
    od:
    seq(A[i],i=1..100); # Robert Israel, Oct 27 2019
  • Mathematica
    Table[Select[FromDigits/@Tuples[{2,7},n],Mod[#,2^n]==0&],{n,18}]//Flatten (* Harvey P. Dale, Jul 14 2025 *)

Formula

a(n) = a(n-1) + 10^(n-1)*(2 + 5*(a(n-1)/2^(n-1) mod 2)), i.e., a(n) ends with a(n-1); if a(n-1) is divisible by 2^n then a(n) begins with a 2, if not then a(n) begins with a 7.

Extensions

Formula corrected by Robert Israel, Oct 27 2019

A053316 a(n) contains n digits (either '2' or '3') and is divisible by 2^n.

Original entry on oeis.org

2, 32, 232, 3232, 23232, 223232, 2223232, 32223232, 232223232, 3232223232, 23232223232, 323232223232, 3323232223232, 23323232223232, 323323232223232, 3323323232223232, 33323323232223232, 333323323232223232
Offset: 1

Views

Author

Henry Bottomley, Mar 06 2000

Keywords

Crossrefs

Programs

  • Maple
    A[1]:= 2:
    for n from 2 to 100 do
       if A[n-1] mod 2^n = 0 then A[n]:= A[n-1]+2*10^(n-1)
       else A[n]:= A[n-1]+3*10^(n-1)
         fi
    od:
    seq(A[i],i=1..100); # Robert Israel, Oct 27 2019

Formula

a(n) = a(n-1) + 10^(n-1)*(2 + (a(n-1)/2^(n-1) mod 2)), i.e., a(n) ends with a(n-1); if a(n-1) is divisible by 2^n then a(n) begins with a 2, if not then a(n) begins with a 3.

Extensions

Formula corrected by Robert Israel, Oct 27 2019

A053317 a(n) contains n digits (either '2' or '5') and is divisible by 2^n.

Original entry on oeis.org

2, 52, 552, 5552, 55552, 255552, 5255552, 55255552, 255255552, 2255255552, 22255255552, 222255255552, 5222255255552, 55222255255552, 255222255255552, 2255222255255552, 22255222255255552, 222255222255255552
Offset: 1

Views

Author

Henry Bottomley, Mar 06 2000

Keywords

Crossrefs

Programs

  • Maple
    A[1]:= 2:
    for n from 2 to 100 do
       if A[n-1] mod 2^n = 0 then A[n]:= A[n-1]+2*10^(n-1)
       else A[n]:= A[n-1]+5*10^(n-1)
    fi
    od:
    seq(A[i],i=1..100); # Robert Israel, Oct 27 2019
  • Mathematica
    Table[Select[FromDigits/@Tuples[{2,5},n],Divisible[#,2^n]&],{n,18}]//Flatten (* Harvey P. Dale, Oct 12 2022 *)

Formula

a(n) = a(n-1) + 10^(n-1)*(2 + 3*(a(n-1)/2^(n-1) mod 2)), i.e., a(n) ends with a(n-1); if a(n-1) is divisible by 2^n then a(n) begins with a 2, if not then a(n) begins with a 5.

Extensions

Formula corrected by Robert Israel, Oct 27 2019
Showing 1-10 of 29 results. Next