cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A035090 Non-palindromic squares which when written backwards remain square (and still have the same number of digits).

Original entry on oeis.org

144, 169, 441, 961, 1089, 9801, 10404, 10609, 12544, 12769, 14884, 40401, 44521, 48841, 90601, 96721, 1004004, 1006009, 1022121, 1024144, 1026169, 1042441, 1044484, 1062961, 1212201, 1214404, 1216609, 1236544, 1238769, 1256641
Offset: 1

Views

Author

Patrick De Geest, Nov 15 1998

Keywords

Comments

Squares with trailing zeros not included.
Sequence is infinite, since it includes, e.g., 10^(2k) + 4*10^k + 4 for all k. - Robert Israel, Sep 20 2015

Crossrefs

Reversing a polytopal number gives a polytopal number:
cube to cube: A035123, A035124, A035125, A002781;
square to square: A161902, A035090, A033294, A106323, A106324, A002779;
square to triangular: A181412, A066702;
tetrahedral to tetrahedral: A006030;
triangular to square: A066703, A179889;
triangular to triangular: A066528, A069673, A003098, A066569.
Cf. A319388.

Programs

  • Maple
    rev:= proc(n) local L,i;
    L:= convert(n,base,10);
    add(L[-i]*10^(i-1),i=1..nops(L))
    end proc:
    filter:= proc(n) local t;
      if n mod 10 = 0 then return false fi;
      t:= rev(n);
    t <> n and issqr(t)
    end proc:
    select(filter, [seq(n^2, n=1..10^5)]); # Robert Israel, Sep 20 2015
  • Mathematica
    Select[Range[1200]^2,!PalindromeQ[#]&&IntegerLength[#]==IntegerLength[ IntegerReverse[ #]] && IntegerQ[Sqrt[IntegerReverse[#]]]&] (* Harvey P. Dale, Jul 19 2023 *)

Formula

a(n) = A035123(n)^2. - R. J. Mathar, Jan 25 2017

A035125 Roots of 'non-palindromic cubes remaining cubic when written backwards'.

Original entry on oeis.org

1011, 1101, 10011, 11001, 100011, 100101, 100111, 101001, 101011, 110001, 110101, 111001, 1000011, 1000101, 1000111, 1001011, 1001101, 1010001, 1010011, 1011001, 1100001, 1100101, 1101001, 1110001, 10000011, 10000101, 10000111, 10001001, 10001011, 10001101, 10010001
Offset: 1

Views

Author

Patrick De Geest, Nov 15 1998

Keywords

Comments

Those with trailing zeros are excluded. Binary look is fortuitous!

Examples

			1000011^3 = 1000033000363001331 -> 1331003630003300001 = 1100001^3.
		

Crossrefs

Extensions

More terms from Seiichi Manyama, Sep 18 2018

A319389 Non-palindromic cubes.

Original entry on oeis.org

27, 64, 125, 216, 512, 729, 1000, 1728, 2197, 2744, 3375, 4096, 4913, 5832, 6859, 8000, 9261, 10648, 12167, 13824, 15625, 17576, 19683, 21952, 24389, 27000, 29791, 32768, 35937, 39304, 42875, 46656, 50653, 54872, 59319, 64000, 68921, 74088, 79507, 85184, 91125
Offset: 1

Views

Author

Seiichi Manyama, Sep 18 2018

Keywords

Crossrefs

A064021 Squares k^2 such that reverse(k)^2 = reverse(k^2), excluding squares of palindromes.

Original entry on oeis.org

144, 169, 441, 961, 10404, 10609, 12544, 12769, 14884, 40401, 44521, 48841, 90601, 96721, 1004004, 1006009, 1022121, 1024144, 1026169, 1042441, 1044484, 1062961, 1212201, 1214404, 1216609, 1236544, 1238769, 1256641, 1258884, 1442401
Offset: 1

Views

Author

Harvey P. Dale, Sep 18 2001

Keywords

Comments

Subsequence of A035090. - M. F. Hasler, Mar 22 2011

Examples

			1026169 is included because its square root, 1013, when reversed (i.e., 3101) and squared yields 9616201.
Squares < 10 and 121 = 11^2, 484 = 22^2, ... are not in the sequence, since they are the square of a palindrome. - _M. F. Hasler_, Mar 22 2011
		

References

  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, pp. 124, 127 (Rev. ed. 1997).

Crossrefs

Programs

  • Mathematica
    Cases[Range[2000]^2, k_ /; Mod[k, 10] != 0 && IntegerDigits[k] != Reverse[IntegerDigits[k]] && FromDigits[Reverse[IntegerDigits[Sqrt[k]]]]^2 == FromDigits[Reverse[IntegerDigits[k]]]] (* Jean-François Alcover, Mar 22 2011 *)
    Select[Range[1250]^2,!PalindromeQ[Sqrt[#]]&&IntegerReverse[#] == IntegerReverse[ Sqrt[#]]^2 &&Mod[#,10]!=0&] (* Harvey P. Dale, Jul 01 2022 *)
  • PARI
    Rev(x)= { local(d,r); r=0; while (x>0, d=x-10*(x\10); x\=10; r=r*10 + d); return(r) }
    { n=0; for (m=1, 10^9, if (m%10==0, next); x=m^2; r=Rev(x); if (r==x, next); if (r==Rev(m)^2, write("b064021.txt", n++, " ", x); if (n==750, break)) ) } \\ Harry J. Smith, Sep 06 2009

Formula

{n = A000290(k) such that A004086(A000290(k)) = A000290(A004086(k)) and k is not in A002113}. - Jonathan Vos Post, May 02 2011
a(n) = A140212(n)^2. - Giovanni Resta, Jun 22 2018
Showing 1-4 of 4 results.