cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A035090 Non-palindromic squares which when written backwards remain square (and still have the same number of digits).

Original entry on oeis.org

144, 169, 441, 961, 1089, 9801, 10404, 10609, 12544, 12769, 14884, 40401, 44521, 48841, 90601, 96721, 1004004, 1006009, 1022121, 1024144, 1026169, 1042441, 1044484, 1062961, 1212201, 1214404, 1216609, 1236544, 1238769, 1256641
Offset: 1

Views

Author

Patrick De Geest, Nov 15 1998

Keywords

Comments

Squares with trailing zeros not included.
Sequence is infinite, since it includes, e.g., 10^(2k) + 4*10^k + 4 for all k. - Robert Israel, Sep 20 2015

Crossrefs

Reversing a polytopal number gives a polytopal number:
cube to cube: A035123, A035124, A035125, A002781;
square to square: A161902, A035090, A033294, A106323, A106324, A002779;
square to triangular: A181412, A066702;
tetrahedral to tetrahedral: A006030;
triangular to square: A066703, A179889;
triangular to triangular: A066528, A069673, A003098, A066569.
Cf. A319388.

Programs

  • Maple
    rev:= proc(n) local L,i;
    L:= convert(n,base,10);
    add(L[-i]*10^(i-1),i=1..nops(L))
    end proc:
    filter:= proc(n) local t;
      if n mod 10 = 0 then return false fi;
      t:= rev(n);
    t <> n and issqr(t)
    end proc:
    select(filter, [seq(n^2, n=1..10^5)]); # Robert Israel, Sep 20 2015
  • Mathematica
    Select[Range[1200]^2,!PalindromeQ[#]&&IntegerLength[#]==IntegerLength[ IntegerReverse[ #]] && IntegerQ[Sqrt[IntegerReverse[#]]]&] (* Harvey P. Dale, Jul 19 2023 *)

Formula

a(n) = A035123(n)^2. - R. J. Mathar, Jan 25 2017

A035123 Roots of 'non-palindromic squares remaining square when written backwards'.

Original entry on oeis.org

12, 13, 21, 31, 33, 99, 102, 103, 112, 113, 122, 201, 211, 221, 301, 311, 1002, 1003, 1011, 1012, 1013, 1021, 1022, 1031, 1101, 1102, 1103, 1112, 1113, 1121, 1122, 1201, 1202, 1211, 1212, 1301, 2001, 2011, 2012, 2021, 2022, 2101, 2102, 2111, 2121
Offset: 1

Views

Author

Patrick De Geest, Nov 15 1998

Keywords

Comments

Those with trailing zeros are excluded.
Union of ordered entries of A106323 and A106324. - Lekraj Beedassy, May 02 2005

Examples

			1212^2 = 1468944 -> 4498641 = 2121^2.
		

Crossrefs

Programs

  • Mathematica
    r[n_] := FromDigits[Reverse[IntegerDigits[n]]]; Select[Range[2200], Mod[#, 10] != 0 && IntegerQ[Sqrt[r[#^2]]] && r[#^2] != #^2 &] (* Jean-François Alcover, Mar 08 2011 *)

A035124 Nonpalindromic cubes remaining cubic which written backwards: take the cube root of n, reverse its digits, cube that and the result is n with its digits reversed.

Original entry on oeis.org

1033364331, 1334633301, 1003303631331, 1331363033001, 1000330036301331, 1003033061330301, 1003333697667631, 1030331603303001, 1030637669664331, 1331036300330001, 1334669667360301, 1367667963333001, 1000033000363001331, 1000303030604030301, 1000333036964367631
Offset: 1

Views

Author

Patrick De Geest, Nov 15 1998

Keywords

Comments

Cubes with trailing zeros are excluded.

Examples

			1011^3 = 1033364331 -> 1334633301 = 1101^3.
1003333697667631 is included because its cube root, 100111, when reversed (i.e., 111001) and cubed yields 1367667963333001.
		

Crossrefs

Programs

  • PARI
    isok(n) = {if (ispower(n, 3, &k), dn = digits(n); if (Vecrev(dn) != dn, dk = Vecrev(digits(k)); rk = subst(Pol(dk, x), x, 10); digits(rk^3) == Vecrev(dn);););} \\ Michel Marcus, Oct 04 2015

Extensions

More terms from Seiichi Manyama, Sep 18 2018

A035122 Roots of 'squares remaining square when written backwards'.

Original entry on oeis.org

1, 2, 3, 11, 12, 13, 21, 22, 26, 31, 33, 99, 101, 102, 103, 111, 112, 113, 121, 122, 201, 202, 211, 212, 221, 264, 301, 307, 311, 836, 1001, 1002, 1003, 1011, 1012, 1013, 1021, 1022, 1031, 1101, 1102, 1103, 1111, 1112, 1113, 1121, 1122, 1201, 1202, 1211
Offset: 1

Views

Author

Patrick De Geest, Nov 15 1998

Keywords

Comments

Numbers with trailing zeros are excluded.

Examples

			99^2 = 9801 -> 1089 = 33^2.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10000], IntegerQ[Sqrt[FromDigits[Reverse[IntegerDigits[ #^2]]]]] &] (* and then delete terms ending with 0 - N. J. A. Sloane, Jul 08 2011 *)
    Sqrt[Select[Range[2000]^2, Mod[#, 10]!=0&&IntegerQ[Sqrt[FromDigits[Reverse[IntegerDigits[#]]]]]&]] (* Vincenzo Librandi, Sep 22 2015 *)

Formula

a(n) = sqrt(A033294(n)). - Michel Marcus, Sep 22 2015
Showing 1-4 of 4 results.