A035130
Cubes when digits rotated right once remain cubic.
Original entry on oeis.org
1, 8, 125, 54439939
Offset: 1
-
[k^3:k in [1..100000]| IsPower(Seqint((Intseq(Floor(k^3/10)) cat [Intseq(k^3)[1]])),3)]; // Marius A. Burtea, Oct 08 2019
-
Select[Range[10000]^3,IntegerQ[Surd[FromDigits[RotateRight[ IntegerDigits[#]]], 3]]&] (* Harvey P. Dale, May 25 2015 *)
A035127
Squares which when digits are rotated left once remain square.
Original entry on oeis.org
1, 4, 9, 144, 196, 625, 11664, 14884, 46656, 96100, 1493284, 4112784, 6385729, 9253764, 139287204, 149377284, 187799616, 618268225, 634284225, 678758809, 929884036, 14938217284, 43325589904, 61076696769, 97482577284
Offset: 1
2527^2 = 6385729 -> 3857296 = 1964^2.
-
okQ[n_]:=Module[{idn=IntegerDigits[n]},idn[[2]]!=0&&IntegerQ[Sqrt[ FromDigits[RotateLeft[idn]]]]]; Join[{1,4,9},Select[Range[4,320000]^2, okQ]] (* Harvey P. Dale, Apr 30 2011 *)
-
from itertools import count, islice
from sympy.solvers.diophantine.diophantine import diop_DN
def A035127_gen(): # generator of terms
for l in count(0):
l1, l2 = 10**(l+1), 10**l
yield from sorted(set(y**2 for z in (diop_DN(10,m*(1-l1)) for m in range(10)) for x, y in z if l1 >= x**2 >= l2))
A035127_list = list(islice(A035127_gen(),20)) # Chai Wah Wu, Apr 23 2022
Showing 1-2 of 2 results.
Comments