cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A035126 Squares when digits rotated right once remain square.

Original entry on oeis.org

1, 4, 9, 256, 441, 961, 16641, 48841, 61009, 66564, 1127844, 2537649, 3857296, 4932841, 182682256, 298840369, 342842256, 392872041, 493772841, 787588096, 877996161, 10766967696, 33255899044, 49382172841, 74825772849
Offset: 1

Views

Author

Patrick De Geest, Nov 15 1998

Keywords

Comments

Those resulting in leading zeros excluded.

Examples

			2221^2 = 4932841 -> 1493284 = 1222^2. Note that the root behaves accordingly!
		

Crossrefs

Programs

  • Magma
    [k:k in [m^2:m in [1..10^6]]| IsSquare(Seqint( (Intseq(Floor(k/10)) cat  [ Intseq(k)[1]])))]; // Marius A. Burtea, Oct 08 2019
    
  • Mathematica
    Select[Range[300000]^2,IntegerQ[Sqrt[FromDigits[RotateRight[ IntegerDigits[ #]]]]]&] (* Harvey P. Dale, Mar 22 2015 *)
  • Python
    from itertools import count, islice
    from sympy.solvers.diophantine.diophantine import diop_DN
    def A035126_gen(): # generator of terms
        for l in count(0):
            l1, l2 = 10**(l+1), 10**l
            yield from sorted(set(x**2 for z in (diop_DN(10,m*(1-l1)) for m in range(10)) for x, y in z if l1 >= x**2 >= l2))
    A035126_list = list(islice(A035126_gen(),30)) # Chai Wah Wu, Apr 23 2022

Formula

a(n) = A045877(n)^2. - R. J. Mathar, Jan 25 2017

A035128 Rotating digits of a(n)^3 right once still yields a cube.

Original entry on oeis.org

1, 2, 5, 379
Offset: 1

Views

Author

Patrick De Geest, Nov 15 1998

Keywords

Comments

Cubes resulting in leading zeros excluded.

Examples

			379^3 = 54439939 -> 95443993 = 457^3.
		

Crossrefs

Programs

  • Magma
    [k:k in [1..100000]| IsPower(Seqint((Intseq(Floor(k^3/10)) cat [Intseq(k^3)[1]])),3)]; // Marius A. Burtea, Oct 08 2019
  • Mathematica
    Select[Range[500], IntegerQ @ Surd[FromDigits @ RotateRight @ IntegerDigits[#^3], 3] &] (* Amiram Eldar, Oct 08 2019 *)

A035131 Cubes that when digits rotated left once remain cubic.

Original entry on oeis.org

1, 8, 512, 95443993
Offset: 1

Views

Author

Patrick De Geest, Nov 15 1998

Keywords

Comments

Those resulting in leading zeros excluded.

Examples

			8^3 = 512 and 125 = 5^3.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[500]^3, (d = RotateLeft @ IntegerDigits[#])[[1]] > 0 && IntegerQ @ Surd[FromDigits @ d, 3] &] (* Amiram Eldar, Oct 08 2019 *)

A353054 Numbers k such that placing the last digit first gives 2k+1.

Original entry on oeis.org

1052, 26315, 15789473, 3157894736, 421052631578, 2105263157894, 36842105263157, 1052631578947368421052, 26315789473684210526315, 15789473684210526315789473, 3157894736842105263157894736, 421052631578947368421052631578, 2105263157894736842105263157894, 36842105263157894736842105263157
Offset: 1

Views

Author

Tanya Khovanova, Apr 20 2022

Keywords

Comments

The digits of all terms appear to be a substring of the digits 105263157894736842 (= A092697(2)) repeated. - Chai Wah Wu, Apr 23 2022

Examples

			2*1052 + 1 = 2105. Thus, 1052 is in this sequence.
		

Crossrefs

Other "rotate right" sequences: A035126, A035130.
Subsequence of A034180.

Programs

  • Mathematica
    Select[Range[100000000], FromDigits[Prepend[Drop[IntegerDigits[#], -1], Last[IntegerDigits[#]]]] == 2 # + 1 &]
  • PARI
    f(n) = if (n < 10, n, my(d=digits(n)); fromdigits(concat(d[#d], Vec(d, #d-1))));
    isok(m) = f(m) == 2*m+1; \\ Michel Marcus, Apr 21 2022
    
  • Python
    from itertools import count, islice
    def A353054_gen(): # generator of terms
        for l in count(1):
            a, b = 10**l-2, 10**(l-1)-2
            for m in range(1,10):
                q, r = divmod(m*a-1,19)
                if r == 0 and b <= q - 2 <= a:
                    yield 10*q+m
    A353054_list = list(islice(A353054_gen(),20)) # Chai Wah Wu, Apr 23 2022

Extensions

a(4)-a(7) from Amiram Eldar, Apr 22 2022
a(8)-a(14) from Chai Wah Wu, Apr 23 2022
Showing 1-4 of 4 results.