cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A035130 Cubes when digits rotated right once remain cubic.

Original entry on oeis.org

1, 8, 125, 54439939
Offset: 1

Views

Author

Patrick De Geest, Nov 15 1998

Keywords

Comments

Those resulting in leading zeros excluded.

Examples

			5^3 = 125 -> 512 = 8^3.
		

Crossrefs

Programs

  • Magma
    [k^3:k in [1..100000]| IsPower(Seqint((Intseq(Floor(k^3/10)) cat [Intseq(k^3)[1]])),3)]; // Marius A. Burtea, Oct 08 2019
  • Mathematica
    Select[Range[10000]^3,IntegerQ[Surd[FromDigits[RotateRight[ IntegerDigits[#]]], 3]]&] (* Harvey P. Dale, May 25 2015 *)

Formula

a(n) = A035128(n)^3. - R. J. Mathar, Jan 25 2017

A045877 Rotating digits of a(n)^2 right once still yields a square.

Original entry on oeis.org

1, 2, 3, 16, 21, 31, 129, 221, 247, 258, 1062, 1593, 1964, 2221, 13516, 17287, 18516, 19821, 22221, 28064, 29631, 103764, 182362, 222221, 273543, 1246713, 1509437, 1635219, 1856538, 2222221, 2253804, 2749249, 2784807, 11619096, 11949507
Offset: 1

Views

Author

Keywords

Comments

Squares resulting in leading zeros excluded.
(2*10^k-11)/9 are terms, i.e. A165402 is a subsequence. - Chai Wah Wu, Apr 23 2022

Examples

			13516^2 = 18268225{6} -> {6}18268225 = 24865^2.
		

Crossrefs

Programs

  • Python
    from itertools import count, islice
    from sympy.solvers.diophantine.diophantine import diop_DN
    def A045877_gen(): # generator of terms
        for l in count(0):
            l1, l2 = 10**(l+1), 10**l
            yield from sorted(set(abs(x) for z in (diop_DN(10,m*(1-l1)) for m in range(10)) for x, y in z if l1 >= x**2 >= l2))
    A045877_list = list(islice(A045877_gen(),30)) # Chai Wah Wu, Apr 23 2022

Extensions

More terms from Patrick De Geest, Nov 15 1998

A353054 Numbers k such that placing the last digit first gives 2k+1.

Original entry on oeis.org

1052, 26315, 15789473, 3157894736, 421052631578, 2105263157894, 36842105263157, 1052631578947368421052, 26315789473684210526315, 15789473684210526315789473, 3157894736842105263157894736, 421052631578947368421052631578, 2105263157894736842105263157894, 36842105263157894736842105263157
Offset: 1

Views

Author

Tanya Khovanova, Apr 20 2022

Keywords

Comments

The digits of all terms appear to be a substring of the digits 105263157894736842 (= A092697(2)) repeated. - Chai Wah Wu, Apr 23 2022

Examples

			2*1052 + 1 = 2105. Thus, 1052 is in this sequence.
		

Crossrefs

Other "rotate right" sequences: A035126, A035130.
Subsequence of A034180.

Programs

  • Mathematica
    Select[Range[100000000], FromDigits[Prepend[Drop[IntegerDigits[#], -1], Last[IntegerDigits[#]]]] == 2 # + 1 &]
  • PARI
    f(n) = if (n < 10, n, my(d=digits(n)); fromdigits(concat(d[#d], Vec(d, #d-1))));
    isok(m) = f(m) == 2*m+1; \\ Michel Marcus, Apr 21 2022
    
  • Python
    from itertools import count, islice
    def A353054_gen(): # generator of terms
        for l in count(1):
            a, b = 10**l-2, 10**(l-1)-2
            for m in range(1,10):
                q, r = divmod(m*a-1,19)
                if r == 0 and b <= q - 2 <= a:
                    yield 10*q+m
    A353054_list = list(islice(A353054_gen(),20)) # Chai Wah Wu, Apr 23 2022

Extensions

a(4)-a(7) from Amiram Eldar, Apr 22 2022
a(8)-a(14) from Chai Wah Wu, Apr 23 2022
Showing 1-3 of 3 results.