A045757
10-factorial numbers.
Original entry on oeis.org
1, 11, 231, 7161, 293601, 14973651, 913392711, 64850882481, 5252921480961, 478015854767451, 48279601331512551, 5359035747797893161, 648443325483545072481, 84946075638344404495011, 11977396665006561033796551, 1808586896415990716103279201, 291182490322974505292627951361
Offset: 1
-
List([1..20], n-> Product([0..n-1], j-> 10*j+1) ); # G. C. Greubel, Nov 11 2019
-
[(&*[10*j+1: j in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Nov 11 2019
-
G(x):=-1+(1-10*x)^(-1/10): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=1..14); # Zerinvary Lajos, Apr 03 2009
seq(mul(10*j+1, j = 0..n-1), n = 1..20); # G. C. Greubel, Nov 11 2019
-
FoldList[Times,10*Range[0,20]+1] (* Harvey P. Dale, Dec 02 2016 *)
-
vector(21, n, prod(j=0,n-1, 10*j+1) ) \\ G. C. Greubel, Nov 11 2019
-
[product( (10*j+1) for j in (0..n-1)) for n in (1..20)] # G. C. Greubel, Nov 11 2019
A035273
One quarter of deca-factorial numbers.
Original entry on oeis.org
1, 14, 336, 11424, 502656, 27143424, 1737179136, 128551256064, 10798305509376, 1015040717881344, 105564234659659776, 12034322751201214464, 1492256021148950593536, 199962306833959379533824, 28794572184090150652870656, 4434364116349883200542081024
Offset: 1
-
List([1..20], n-> Product([1..n], j-> 10*j-6)/4 ); # G. C. Greubel, Nov 11 2019
-
[(&*[10*j-6: j in [1..n]])/4: n in [1..20]]; // G. C. Greubel, Nov 11 2019
-
seq( mul(10*j-6, j=1..n)/4, n=1..20); # G. C. Greubel, Nov 11 2019
-
Table[10^n*Pochhammer[4/10, n]/4, {n,20}] (* G. C. Greubel, Nov 11 2019 *)
-
vector(20, n, prod(j=1,n, 10*j-6)/4 ) \\ G. C. Greubel, Nov 11 2019
-
[product( (10*j-6) for j in (1..n))/4 for n in (1..20)] # G. C. Greubel, Nov 11 2019
A035277
One eighth of deca-factorial numbers.
Original entry on oeis.org
1, 18, 504, 19152, 919296, 53319168, 3625703424, 282804867072, 24886828302336, 2438909173628928, 263402190751924224, 31081458508727058432, 3978426689117063479296, 549022883098154760142848, 81255386698526904501141504, 12838351098367250911180357632
Offset: 1
Cf.
A034301,
A045757,
A035265,
A035272,
A035273,
A035274,
A035275,
A035276,
A035277,
A035278,
A035279.
-
List([1..20], n-> Product([1..n], j-> 10*j-2)/8 ); # G. C. Greubel, Nov 11 2019
-
[(&*[10*j-2: j in [1..n]])/8: n in [1..20]]; // G. C. Greubel, Nov 11 2019
-
seq( mul(10*j-2, j=1..n)/8, n=1..20); # G. C. Greubel, Nov 11 2019
-
Table[10^n*Pochhammer[4/5, n]/8, {n,20}] (* G. C. Greubel, Nov 11 2019 *)
-
vector(20, n, prod(j=1,n, 10*j-2)/8 ) \\ G. C. Greubel, Nov 11 2019
-
[product( (10*j-2) for j in (1..n))/8 for n in (1..20)] # G. C. Greubel, Nov 11 2019
A035272
One third of deca-factorial numbers.
Original entry on oeis.org
1, 13, 299, 9867, 424281, 22486893, 1416674259, 103417220907, 8583629335281, 798277528181133, 82222585402656699, 9291152150500206987, 1142811714511525459401, 151993958030032886100333, 21735135998294702712347619, 3325475807739089514989185707, 542052556661471590943237270241
Offset: 1
-
List([1..20], n-> Product([1..n], j-> 10*j-7)/3 ); # G. C. Greubel, Nov 11 2019
-
[(&*[10*j-7: j in [1..n]])/3: n in [1..20]]; // G. C. Greubel, Nov 11 2019
-
seq( mul(10*j-7, j=1..n)/3, n=1..20); # G. C. Greubel, Nov 11 2019
-
Table[10^n*Pochhammer[3/10, n]/3, {n, 20}] (* G. C. Greubel, Nov 11 2019 *)
-
vector(20, n, prod(j=1,n, 10*j-7)/3 ) \\ G. C. Greubel, Nov 11 2019
-
[product( (10*j-7) for j in (1..n))/3 for n in (1..20)] # G. C. Greubel, Nov 11 2019
A035274
One fifth of deca-factorial numbers.
Original entry on oeis.org
1, 15, 375, 13125, 590625, 32484375, 2111484375, 158361328125, 13460712890625, 1278767724609375, 134270611083984375, 15441120274658203125, 1930140034332275390625, 260568904634857177734375, 37782491172054290771484375, 5856286131668415069580078125
Offset: 1
-
List([1..20], n-> Product([1..n], j-> 10*j-5)/5 ); # G. C. Greubel, Nov 11 2019
-
[(&*[10*j-5: j in [1..n]])/5: n in [1..20]]; // G. C. Greubel, Nov 11 2019
-
seq( mul(10*j-5, j=1..n)/5, n=1..20); # G. C. Greubel, Nov 11 2019
-
Table[10^n*Pochhammer[5/10, n]/5, {n,20}] (* G. C. Greubel, Nov 11 2019 *)
-
vector(20, n, prod(j=1,n, 10*j-5)/5 ) \\ G. C. Greubel, Nov 11 2019
-
[product( (10*j-5) for j in (1..n))/5 for n in (1..20)] # G. C. Greubel, Nov 11 2019
A035275
One sixth of deca-factorial numbers.
Original entry on oeis.org
1, 16, 416, 14976, 688896, 38578176, 2546159616, 193508130816, 16641699250176, 1597603128016896, 169345931569790976, 19644128062095753216, 2475160135824064905216, 336621778472072827109376, 49146779656922632757968896, 7666897626479930710243147776
Offset: 1
-
List([1..20], n-> Product([1..n], j-> 10*j-4)/6 ); # G. C. Greubel, Nov 11 2019
-
[(&*[10*j-4: j in [1..n]])/6: n in [1..20]]; // G. C. Greubel, Nov 11 2019
-
seq( mul(10*j-4, j=1..n)/6, n=1..20); # G. C. Greubel, Nov 11 2019
-
Table[10^n*Pochhammer[6/10, n]/6, {n, 20}] (* G. C. Greubel, Nov 11 2019 *)
-
vector(20, n, prod(j=1,n, 10*j-4)/6 ) \\ G. C. Greubel, Nov 11 2019
-
[product( (10*j-4) for j in (1..n))/6 for n in (1..20)] # G. C. Greubel, Nov 11 2019
A035276
One seventh of deca-factorial numbers.
Original entry on oeis.org
1, 17, 459, 16983, 798201, 45497457, 3048329619, 234721380663, 20420760117681, 1980813731415057, 211947069261411099, 24797807103585098583, 3149321502155307520041, 431457045795277130245617, 63424185731905738146105699, 9957597159909200888938594743
Offset: 1
-
List([1..20], n-> Product([1..n], j-> 10*j-3)/7 ); # G. C. Greubel, Nov 11 2019
-
[(&*[10*j-3: j in [1..n]])/7: n in [1..20]]; // G. C. Greubel, Nov 11 2019
-
seq( mul(10*j-3, j=1..n)/7, n=1..20); # G. C. Greubel, Nov 11 2019
-
Table[10^n*Pochhammer[7/10, n]/7, {n, 20}] (* G. C. Greubel, Nov 11 2019 *)
-
vector(20, n, prod(j=1,n, 10*j-3)/7 ) \\ G. C. Greubel, Nov 11 2019
-
[product( (10*j-3) for j in (1..n))/7 for n in (1..20)] # G. C. Greubel, Nov 11 2019
A049212
a(n) = -Product_{k=0..n} (10*k - 1); deca-factorial numbers.
Original entry on oeis.org
1, 9, 171, 4959, 193401, 9476649, 559122291, 38579438079, 3047775608241, 271252029133449, 26853950884211451, 2927080646379048159, 348322596919106730921, 44933615002564768288809, 6245772485356502792144451, 930620100318118916029523199, 147968595950580907648694188641
Offset: 0
-
[Round(10^n*Gamma(n+9/10)/Gamma(9/10)): n in [0..25]]; // G. C. Greubel, Feb 03 2022
-
CoefficientList[Series[(1-10*x)^(-9/10),{x,0,20}],x] * Range[0,20]! (* Vaclav Kotesovec, Jan 28 2015 *)
-
a(n) = {-prod(k=0, n, 10*k-1)} \\ Andrew Howroyd, Jan 02 2020
-
[10^n*rising_factorial(9/10, n) for n in (0..25)] # G. C. Greubel, Feb 03 2022
A035265
One half of deca-factorial numbers.
Original entry on oeis.org
1, 12, 264, 8448, 354816, 18450432, 1143926784, 82362728448, 6753743732736, 621344423411712, 63377131187994624, 7098238693055397888, 865985120552758542336, 114310035912964127588352, 16232025099640906117545984, 2467267815145417729866989568, 399697386053557672238452310016
Offset: 1
-
List([1..20], n-> Product([1..n], j-> 10*j-8)/2 ); # G. C. Greubel, Nov 11 2019
-
[(&*[10*j-8: j in [1..n]])/2: n in [1..20]]; // G. C. Greubel, Nov 11 2019
-
seq( mul(10*j-8, j=1..n)/2, n=1..20); # G. C. Greubel, Nov 11 2019
-
Table[10^n*Pochhammer[2/10, n]/2, {n,20}] (* G. C. Greubel, Nov 11 2019 *)
-
vector(20, n, prod(j=1,n, 10*j-8)/2 ) \\ G. C. Greubel, Nov 11 2019
-
[product( (10*j-8) for j in (1..n))/2 for n in (1..20)] # G. C. Greubel, Nov 11 2019
A025755
10th-order Patalan numbers (generalization of Catalan numbers).
Original entry on oeis.org
1, 1, 45, 2850, 206625, 16116750, 1316201250, 110936962500, 9568313015625, 839885253593750, 74749787569843750, 6727480881285937500, 611079513383472656250, 55937278532794804687500, 5154220664807521289062500, 477624448272163639453125000, 44478776745345238924072265625
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seq., Vol. 3 (2000), Article 00.2.4.
- Elżbieta Liszewska and Wojciech Młotkowski, Some relatives of the Catalan sequence, arXiv:1907.10725 [math.CO], 2019.
- Thomas M. Richardson, The Super Patalan Numbers, J. Int. Seq. 18 (2015), Article 15.3.3; arXiv preprint, arXiv:1410.5880 [math.CO], 2014.
-
CoefficientList[Series[(11 -(1 - 100*x)^(1/10))/10, {x, 0, 20}], x] (* Vincenzo Librandi, Dec 29 2012 *)
a[n_] := 100^(n-1) * Pochhammer[9/10, n-1] / n!; a[0] = 1; Array[a, 26, 0] (* Amiram Eldar, Aug 20 2025 *)
Showing 1-10 of 10 results.
Comments