cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035287 Number of ways to place a non-attacking white and black rook on n X n chessboard.

Original entry on oeis.org

0, 4, 36, 144, 400, 900, 1764, 3136, 5184, 8100, 12100, 17424, 24336, 33124, 44100, 57600, 73984, 93636, 116964, 144400, 176400, 213444, 256036, 304704, 360000, 422500, 492804, 571536, 659344, 756900, 864900, 984064, 1115136, 1258884
Offset: 1

Views

Author

Keywords

Comments

a(n) is equal to the number of functions f:{1,2,3,4}->{1,2,...,n} such that for fixed different x_1, x_2 in {1,2,3,4} and fixed y_1, y_2 in {1,2,...,n} we have f(x_1) <> y_1 and f(x_2) <> y_2. - Milan Janjic, Apr 17 2007
The third differences of certain values of the hypergeometric function 3F2 lead to this sequence, i.e., 3F2([1,n+1,n+1], [n+2,n+2], z=1) - 3*3F2([1,n+2,n+2], [n+3,n+3], z=1) + 3*3F2([1,n+3,n+3], [n+4,n+4], z=1) - 3F2([1,n+4,n+4], [n+5,n+5], z=1) = (1/((n+2)*(n+3)))^2 with n = -1, 0, 1, 2, ... See also A162990. - Johannes W. Meijer, Jul 21 2009
a(n) is the denominator (m*n)^2 of the term (1/m^2 - 1/n^2) = (2*n-1)/(m*n)^2, n = m+1, m > 0 in the Rydberg formula, while A005408 is the numerator 2n-1. So the quotient A005408/A035287 simulates the hydrogen spectral series of all hydrogen-like elements. - Freimut Marschner, Aug 10 2013

Crossrefs

Cf. A002378.
Cf. A000290.

Programs

Formula

a(n) = n^2 * (n-1)^2.
a(n) = A002378(n-1)^2. - Zerinvary Lajos, Apr 11 2006
From Stephen Crowley, Jul 19 2009: (Start)
a(n) = n!*(2*n+1) / lim_{x->0} (d^n/dx^n) (polylog(2,x)*(1-1/x));
Sum_{n >= 2} 1/a(n) = 2*zeta(2) - 3 = A145426. (End) [Comment from Jianing Song, Dec 31 2022: Note that polylog(2,x)*(1-1/x) = -1 + Sum_{n>=1} ((2*n+1)/(n^2*(n+1)^2))*x^n, so (d^n/dx^n) (polylog(2,x)*(1-1/x)) = n!*(2*n+1)/(n^2*(n+1)^2) for n >= 1. - Jianing Song, Dec 31 2022]
a(n) = 4*A000537(n-1) = 2*A163102(n-1). - Omar E. Pol, Nov 29 2011
G.f.: 4*x^2*(1+4*x+x^2)/(1-x)^5. - Colin Barker, Apr 04 2012
a(n) = 4*A000217(n-1)^2. - J. M. Bergot, Nov 01 2012
E.g.f.: x^2*(2 + 4*x + x^2)*exp(x). - Ilya Gutkovskiy, May 24 2016
Sum_{n>=2} (-1)^n/a(n) = 3 - 4*log(2). - Amiram Eldar, Jul 02 2020
Product_{n>=2} (1 - 1/a(n)) = -cos(sqrt(5)*Pi/2)*cosh(sqrt(3)*Pi/2)/Pi^2. - Amiram Eldar, Jan 29 2021
(n^2)^2 + (n^2+1)^2 + ... + (n^2 + n)^2 + a(n) = (n^2 + n + 1)^2 + ... + (n^2 + 2*n)^2. - Charlie Marion, Jun 18 2022
a(n) = A000290(n-1) * A000290(n). - Leo Tavares, Dec 03 2022
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n >= 6. - Jianing Song, Dec 30 2022