A035287 Number of ways to place a non-attacking white and black rook on n X n chessboard.
0, 4, 36, 144, 400, 900, 1764, 3136, 5184, 8100, 12100, 17424, 24336, 33124, 44100, 57600, 73984, 93636, 116964, 144400, 176400, 213444, 256036, 304704, 360000, 422500, 492804, 571536, 659344, 756900, 864900, 984064, 1115136, 1258884
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets.
- Leo Tavares, Illustration: Square of squares
- Wolfram Research, Hypergeometric Function 3F2, The Wolfram Functions site. [From _Johannes W. Meijer_, Jul 21 2009]
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
Magma
[n^2 * (n-1)^2: n in [1..40]]; // Vincenzo Librandi, May 21 2011
-
Mathematica
Table[(n - 1)^2 n^2, {n, 30}] (* Alonso del Arte, May 20 2011 *)
-
Python
for n in range(100): print(((n+1)*n)**2) # John H. Chakkour, Dec 14 2019
-
Sage
[n^2*(n-1)^2 for n in range(1, 35)] # Zerinvary Lajos, Dec 03 2009
Formula
a(n) = n^2 * (n-1)^2.
a(n) = A002378(n-1)^2. - Zerinvary Lajos, Apr 11 2006
From Stephen Crowley, Jul 19 2009: (Start)
a(n) = n!*(2*n+1) / lim_{x->0} (d^n/dx^n) (polylog(2,x)*(1-1/x));
Sum_{n >= 2} 1/a(n) = 2*zeta(2) - 3 = A145426. (End) [Comment from Jianing Song, Dec 31 2022: Note that polylog(2,x)*(1-1/x) = -1 + Sum_{n>=1} ((2*n+1)/(n^2*(n+1)^2))*x^n, so (d^n/dx^n) (polylog(2,x)*(1-1/x)) = n!*(2*n+1)/(n^2*(n+1)^2) for n >= 1. - Jianing Song, Dec 31 2022]
G.f.: 4*x^2*(1+4*x+x^2)/(1-x)^5. - Colin Barker, Apr 04 2012
a(n) = 4*A000217(n-1)^2. - J. M. Bergot, Nov 01 2012
E.g.f.: x^2*(2 + 4*x + x^2)*exp(x). - Ilya Gutkovskiy, May 24 2016
Sum_{n>=2} (-1)^n/a(n) = 3 - 4*log(2). - Amiram Eldar, Jul 02 2020
Product_{n>=2} (1 - 1/a(n)) = -cos(sqrt(5)*Pi/2)*cosh(sqrt(3)*Pi/2)/Pi^2. - Amiram Eldar, Jan 29 2021
(n^2)^2 + (n^2+1)^2 + ... + (n^2 + n)^2 + a(n) = (n^2 + n + 1)^2 + ... + (n^2 + 2*n)^2. - Charlie Marion, Jun 18 2022
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n >= 6. - Jianing Song, Dec 30 2022
Comments