A035316 Sum of the square divisors of n.
1, 1, 1, 5, 1, 1, 1, 5, 10, 1, 1, 5, 1, 1, 1, 21, 1, 10, 1, 5, 1, 1, 1, 5, 26, 1, 10, 5, 1, 1, 1, 21, 1, 1, 1, 50, 1, 1, 1, 5, 1, 1, 1, 5, 10, 1, 1, 21, 50, 26, 1, 5, 1, 10, 1, 5, 1, 1, 1, 5, 1, 1, 10, 85, 1, 1, 1, 5, 1, 1, 1, 50, 1, 1, 26, 5, 1, 1, 1, 21, 91, 1, 1, 5, 1, 1, 1, 5, 1, 10, 1, 5, 1
Offset: 1
Links
- Nick Hobson, Table of n, a(n) for n = 1..1000
- A. Dixit, B. Maji, and A. Vatwani, Voronoi summation formula for the generalized divisor function sigma_z^k(n), arXiv:2303.09937 [math.NT], 2023, sigma_(z=2,k=2,n).
- R. J. Mathar, Survey of Dirichlet series of multiplicative arithmetic functions, arXiv:1106.4038 [math.NT] (2011), Remark 15.
- Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
Crossrefs
Programs
-
Haskell
a035316 n = product $ zipWith (\p e -> (p ^ (e + 2 - mod e 2) - 1) `div` (p ^ 2 - 1)) (a027748_row n) (a124010_row n) -- Reinhard Zumkeller, Jul 28 2014
-
Maple
A035316 := proc(n) local a,pe,p,e; a := 1; for pe in ifactors(n)[2] do p := pe[1] ; e := pe[2] ; if type(e,'even') then e := e+2 ; else e := e+1 ; end if; a := a*(p^e-1)/(p^2-1) ; end do: a ; end proc: seq(A035316(n),n=1..100) ; # R. J. Mathar, Oct 10 2017
-
Mathematica
Table[ Plus @@ Select[ Divisors@ n, IntegerQ@ Sqrt@ # &], {n, 93}] (* Robert G. Wilson v, Feb 19 2011 *) f[p_, e_] := (p^(2*(1 + Floor[e/2])) - 1)/(p^2 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 01 2020 *)
-
PARI
vector(93, n, sumdiv(n, d, issquare(d)*d))
-
PARI
a(n)=my(f=factor(n));prod(i=1,#f[,1],(f[i,1]^(f[i,2]+2-f[i,2]%2)-1)/(f[i,1]^2-1)) \\ Charles R Greathouse IV, May 20 2013
Formula
Multiplicative with a(p^e)=(p^(e+2)-1)/(p^2-1) for even e and a(p^e)=(p^(e+1)-1)/(p^2-1) for odd e. - Vladeta Jovovic, Dec 05 2001
G.f.: Sum_{k>0} k^2*x^(k^2)/(1-x^(k^2)). - Vladeta Jovovic, Dec 13 2002
a(n^2) = A001157(n). - Michel Marcus, Jan 14 2014
L.g.f.: -log(Product_{k>=1} (1 - x^(k^2))) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 06 2017
Sum_{k=1..n} a(k) ~ Zeta(3/2)*n^(3/2)/3 - n/2. - Vaclav Kotesovec, Feb 04 2019
a(n) = Sum_{k=1..n} k * (floor(sqrt(k)) - floor(sqrt(k-1))) * (1 - ceiling(n/k) + floor(n/k)). - Wesley Ivan Hurt, Jun 13 2021
a(n) = Sum_{d|n} d * c(d), where c = A010052. - Wesley Ivan Hurt, Jun 20 2024
a(n) = Sum_{d|n} lambda(d)*d*sigma(n/d), where lambda = A008836. - Ridouane Oudra, Jul 18 2025
Comments