A035343 Triangle of coefficients in expansion of (1 + x + x^2 + x^3 + x^4)^n.
1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 4, 3, 2, 1, 1, 3, 6, 10, 15, 18, 19, 18, 15, 10, 6, 3, 1, 1, 4, 10, 20, 35, 52, 68, 80, 85, 80, 68, 52, 35, 20, 10, 4, 1, 1, 5, 15, 35, 70, 121, 185, 255, 320, 365, 381, 365, 320, 255, 185, 121, 70, 35, 15, 5, 1, 1, 6, 21, 56, 126, 246, 426, 666
Offset: 0
Examples
Triangle begins: n\k [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [0] 1; [1] 1, 1, 1, 1, 1; [2] 1, 2, 3, 4, 5, 4, 3, 2, 1; [3] 1, 3, 6, 10, 15, 18, 19, 18, 15, 10, 6, 3, 1; [4] ...
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, pp. 77-78, 16. for q=5.
- D. C. Fielder and C. O. Alford, Pascal's triangle: top gun or just one of the gang?, in G E Bergum et al., eds., Applications of Fibonacci Numbers Vol. 4 1991 pp. 77-90 (Kluwer).
Links
- T. D. Noe, Rows n = 0..25, flattened
- Moussa Ahmia and Hacene Belbachir, Preserving log-convexity for generalized Pascal triangles, Electronic Journal of Combinatorics, 19(2) (2012), #P16. - From _N. J. A. Sloane_, Oct 13 2012
- Said Amrouche, Hacène Belbachir, Asymmetric extension of Pascal-Dellanoy triangles, arXiv:2001.11665 [math.CO], 2020.
- Armen G. Bagdasaryan, Ovidiu Bagdasar, On some results concerning generalized arithmetic triangles, Electronic Notes in Discrete Mathematics (2018) Vol. 67, 71-77.
- Tomislav Došlić, Block allocation of a sequential resource, Ars Mathematica Contemporanea (2019) Vol. 17, 79-88.
- Nour-Eddine Fahssi, Polynomial Triangles Revisited, arXiv:1202.0228 [math.CO], (25-July-2012).
- D. C. Fielder and C. O. Alford, Pascal's triangle: top gun or just one of the gang?, Applications of Fibonacci Numbers 4 (1991), 77-90. (Annotated scanned copy)
- S. R. Finch, P. Sebah and Z.-Q. Bai, Odd Entries in Pascal's Trinomial Triangle, arXiv:0802.2654 [math.NT], 2006.
- J. E. Freund, Restricted Occupancy Theory - A Generalization of Pascal's Triangle, American Mathematical Monthly, Vol. 63, No. 1 (1956), pp. 20-27.
- Kuhapatanakul, Kantaphon; Anantakitpaisal, Pornpawee The k-nacci triangle and applications. Cogent Math. 4, Article ID 1333293, 13 p. (2017).
- Thorsten Neuschel, A Note on Extended Binomial Coefficients, J. Int. Seq. 17 (2014) # 14.10.4.
- Yassine Otmani, The 2-Pascal Triangle and a Related Riordan Array, J. Int. Seq. (2025) Vol. 28, Issue 3, Art. No. 25.3.5. See p. 4.
- Eric Rowland, A matrix generalization of a theorem of Fine, arXiv:1704.05872 [math.NT], 2017. See p.5.
- Eric Rowland, A matrix generalization of a theorem of Fine, Integers, Electronic Journal of Combinatorial Number Theory 18A (2018), #A18.
- Bao-Xuan Zhu, Linear transformations and strong q-log-concavity for certain combinatorial triangle, arXiv preprint arXiv:1605.00257 [math.CO], 2016.
Programs
-
Maple
#Define the r-nomial coefficients for r = 1, 2, 3, ... rnomial := (r,n,k) -> add((-1)^i*binomial(n,i)*binomial(n+k-1-r*i,n-1), i = 0..floor(k/r)): #Display the 5-nomials as a table r := 5: rows := 10: for n from 0 to rows do seq(rnomial(r,n,k), k = 0..(r-1)*n) end do; # Peter Bala, Sep 07 2013
-
Mathematica
Flatten[Table[CoefficientList[(1 + x + x^2 + x^3 + x^4)^n, x], {n, 0, 10}]] (* T. D. Noe, Apr 04 2011 *)
-
Maxima
pentanomial(n,k):=coeff(expand((1+x+x^2+x^3+x^4)^n),x,k); create_list(pentanomial(n,k),n,0,6,k,0,4*n); /* Emanuele Munarini, Mar 15 2011 */
-
PARI
row(n) = Vec(((1 + x + x^2 + x^3 + x^4)^n) + O(x^(4*n+1))) trianglerows(n) = for(k=0, n-1, print(row(k))) /* Print initial 5 rows of triangle as follows */ trianglerows(5) \\ Felix Fröhlich, Aug 26 2018
Formula
T(n,k) = Sum_{i = 0..floor(k/5)} (-1)^i*binomial(n,i)*binomial(n+k-1-5*i,n-1) for n >= 0 and 0 <= k <= 4*n. - Peter Bala, Sep 07 2013
Comments