cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A162663 Table by antidiagonals, T(n,k) is the number of partitions of {1..(nk)} that are invariant under a permutation consisting of n k-cycles.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 2, 7, 5, 1, 3, 8, 31, 15, 1, 2, 16, 42, 164, 52, 1, 4, 10, 111, 268, 999, 203, 1, 2, 28, 70, 931, 1994, 6841, 877, 1, 4, 12, 258, 602, 9066, 16852, 51790, 4140, 1, 3, 31, 106, 2892, 6078, 99925, 158778, 428131, 21147, 1, 4, 22, 329, 1144, 37778, 70402, 1224579, 1644732, 3827967, 115975
Offset: 0

Views

Author

Keywords

Comments

The upper left corner of the array is T(0,1).
Without loss of generality, the permutation can be taken to be (1 2 ... k) (k+1 k+2 ... 2k) ... ((n-1)k+1 (n-1)k+2 ... nk).
Note that it is the partition that is invariant, not the individual parts. Thus for n=k=2 with permutation (1 2)(3 4), the partition 1,3|2,4 is counted; it maps to 2,4|1,3, which is the same partition.

Examples

			The table starts:
   1,   1,   1,   1,   1
   1,   2,   2,   3,   2
   2,   7,   8,  16,  10
   5,  31,  42, 111,  70
  15, 164, 268, 931, 602
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    A:= proc(n, k) option remember; `if`(n=0, 1, add(binomial(n-1, j-1)
           *add(d^(j-1), d=divisors(k))*A(n-j, k), j=1..n))
        end:
    seq(seq(A(n, 1+d-n), n=0..d), d=0..12);  # Alois P. Heinz, Oct 29 2015
  • Mathematica
    max = 11; ClearAll[col]; col[k_] := col[k] =  CoefficientList[ Series[ Exp[ Sum[ (Exp[d*x] - 1)/d, {d, Divisors[k]}]], {x, 0, max}], x]*Range[0, max]!; t[n_, k_] := col[k][[n]]; Flatten[ Table[ t[n-k+1, k], {n, 1, max}, {k, n, 1, -1}] ] (* Jean-François Alcover, Aug 08 2012, after e.g.f. *)
  • PARI
    amat(n,m)=local(r);r=matrix(n,m,i,j,1);for(k=1,n-1,for(j=1,m,r[k+1,j]=sum (i=1,k,binomial(k-1,i-1)*sumdiv(j,d,r[k-i+1,j]*d^(i-1)))));r
    acol(n,k)=local(fn);fn=exp(sumdiv(k,d,(exp(d*x+x*O(x^n))-1)/d));vector(n+ 1,i,polcoeff(fn,i-1)*(i-1)!)

Formula

E.g.f. for column k: exp(Sum_{d|k} (exp(d*x) - 1) / d).
Equivalently, column k is the exponential transform of a(n) = Sum_{d|k} d^(n-1); this represents a set of n k-cycles, each repeating the same d elements (parts), but starting in different places.
T(n,k) = Sum_{P a partition of n} SP(P) * Product_( (sigma_{i-1}(k))^(P(i)-1) ), where SP is A036040 or A080575, and P(i) is the number of parts in P of size i.
T(n,k) = Sum_{j=0..n-1} A036073(n,j)*k^(n-1-j). - Andrey Zabolotskiy, Oct 22 2017

Extensions

Offset set to 0 by Alois P. Heinz, Oct 29 2015

A002874 The number of partitions of {1..3n} that are invariant under a permutation consisting of n 3-cycles.

Original entry on oeis.org

1, 2, 8, 42, 268, 1994, 16852, 158778, 1644732, 18532810, 225256740, 2933174842, 40687193548, 598352302474, 9290859275060, 151779798262202, 2600663778494172, 46609915810749130, 871645673599372868, 16971639450858467002, 343382806080459389676
Offset: 0

Views

Author

Keywords

Comments

Original name: Sorting numbers.

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

u[n,j] generates for j=1, A000110; j=2, A002872; j=3, this sequence; j=4, A141003; j=5, A036075; j=6, A141004; j=7, A036077. - Wouter Meeussen, Dec 06 2008
Equals column 3 of A162663. - Michel Marcus, Mar 27 2013
Row sums of A294201.

Programs

  • Maple
    S:= series(exp( (exp(3*x) - 4)/3 + exp(x)), x, 31):
    seq(coeff(S,x,j)*j!, j=0..30); # Robert Israel, Oct 30 2015
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 1, add((1+
          3^(j-1))*binomial(n-1, j-1)*a(n-j), j=1..n))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Oct 17 2017
  • Mathematica
    u[0,j_]:=1;u[k_,j_]:=u[k,j]=Sum[Binomial[k-1,i-1]Plus@@(u[k-i,j]#^(i-1)&/@Divisors[j]),{i,k}]; Table[u[n,3],{n,0,12}] (* Wouter Meeussen, Dec 06 2008 *)
    mx = 16; p = 3; Range[0, mx]! CoefficientList[ Series[ Exp[ (Exp[p*x] - p - 1)/p + Exp[x]], {x, 0, mx}], x] (* Robert G. Wilson v, Dec 12 2012 *)
    Table[Sum[Binomial[n,k] * 3^k * BellB[k, 1/3] * BellB[n-k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 29 2022 *)

Formula

E.g.f.: exp( (exp(3*x) - 4)/3 + exp(x) ).
a(n) ~ exp(exp(3*r)/3 + exp(r) - 4/3 - n) * (n/r)^(n + 1/2) / sqrt((1 + 3*r)*exp(3*r) + (1 + r)*exp(r)), where r = LambertW(3*n)/3 - 1/(1 + 3/LambertW(3*n) + n^(2/3) * (1 + LambertW(3*n)) * (3/LambertW(3*n))^(5/3)). - Vaclav Kotesovec, Jul 03 2022
a(n) ~ (3*n/LambertW(3*n))^n * exp(n/LambertW(3*n) + (3*n/LambertW(3*n))^(1/3) - n - 4/3) / sqrt(1 + LambertW(3*n)). - Vaclav Kotesovec, Jul 10 2022

Extensions

New name from Danny Rorabaugh, Oct 24 2015

A084708 Number of set partitions up to rotations and reflections.

Original entry on oeis.org

1, 2, 3, 7, 12, 37, 93, 354, 1350, 6351, 31950, 179307, 1071265, 6845581, 46162583, 327731950, 2437753740, 18948599220, 153498350745, 1293123243928, 11306475314467, 102425554299516, 959826755336242, 9290811905391501
Offset: 1

Views

Author

Wouter Meeussen, Jul 02 2003

Keywords

Comments

Combines the symmetry operations of A080107 and A084423.
Equivalently, number of n-bead bracelets using any number of unlabeled (interchangable) colors. - Andrew Howroyd, Sep 25 2017

Examples

			SetPartitions[6] is the first to decompose differently from A084423: 4 cycles of length 1, 2 of 2, 9 of 3, 16 of 6, 6 of 12.
a(7) = 1 + A056357(7) + A056358(7) + A056359(7) + A056360(7) + A056361(7) + 1 = 1 + 8 + 31 + 33 + 16 + 3 + 1 = 93.
		

Crossrefs

Programs

  • Mathematica
    <A080107 *); Table[{Length[ # ], First[ # ]}&/@ Split[Sort[Length/@Split[Sort[First[Sort[Flatten[ {#, Map[Sort, (#/. i_Integer:>w+1-i), 2]}& @(NestList[Sort[Sort/@(#/. i_Integer :> Mod[i+1, w, 1])]&, #, w]), 1]]]&/@SetPartitions[w]]]]], {w, 1, 10}]
    u[0,j_]:=1;u[k_,j_]:=u[k,j]=Sum[Binomial[k-1,i-1]Plus@@(u[k-i,j]#^(i-1)&/@Divisors[j]),{i,k}]; a[n_]:=1/n*Plus@@(EulerPhi[ # ]u[Quotient[n,# ],# ]&/@Divisors[n]); Table[a[n]/2+If[EvenQ[n],u[n/2,2],Sum[Binomial[n/2-1/2,k] u[k,2], {k,0,n/2-1/2}]]/2,{n,40}] (* Wouter Meeussen, Dec 06 2008 *)

Formula

a(n) = (A080107(n)+A084423(n))/2. - Wouter Meeussen and Vladeta Jovovic, Nov 28 2008

Extensions

a(12) from Vladeta Jovovic, Jul 15 2007
More terms from Vladeta Jovovic's formula given in Mathematica line. - Wouter Meeussen, Dec 06 2008

A036075 The number of partitions of {1..5n} that are invariant under a permutation consisting of n 5-cycles.

Original entry on oeis.org

1, 2, 10, 70, 602, 6078, 70402, 917830, 13253002, 209350350, 3584098770, 66012131222, 1300004931162, 27232369503902, 604103160535330, 14136908333006822, 347827448896896554, 8971450949011952494
Offset: 0

Views

Author

Keywords

Comments

Original name: Sorting numbers.

Crossrefs

u[n,j] generates for j=1, A000110 Bell numbers; j=2, A002872; j=3, A002874; j=4, A141003 (Mathar); j=5, this sequence; j=6, A141004 (Mathar); j=7, A036077. - Wouter Meeussen, Dec 06 2008
Column 5 of A162663.

Programs

  • Mathematica
    u[0,j_]:=1;u[k_,j_]:=u[k,j]=Sum[Binomial[k-1,i-1]Plus@@(u[k-i,j]#^(i-1)&/@Divisors[j]),{i,k}]; Table[u[n,5],{n,0,12}] (* Wouter Meeussen, Dec 06 2008 *)
    mx = 16; p = 5; Range[0, mx]! CoefficientList[ Series[ Exp[ (Exp[p*x] - p - 1)/p + Exp[x]], {x, 0, mx}], x] (* Robert G. Wilson v, Dec 12 2012 *)
    Table[Sum[Binomial[n,k] * 5^k * BellB[k, 1/5] * BellB[n-k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 29 2022 *)

Formula

E.g.f.: exp((exp(p*x)-p-1)/p+exp(x)) for p=5.
a(n) ~ exp(exp(p*r)/p + exp(r) - 1 - 1/p - n) * (n/r)^(n + 1/2) / sqrt((1 + p*r)*exp(p*r) + (1 + r)*exp(r)), where r = LambertW(p*n)/p - 1/(1 + p/LambertW(p*n) + n^(1 - 1/p) * (1 + LambertW(p*n)) * (p/LambertW(p*n))^(2 - 1/p)) for p=5. - Vaclav Kotesovec, Jul 03 2022
a(n) ~ (5*n/LambertW(5*n))^n * exp(n/LambertW(5*n) + (5*n/LambertW(5*n))^(1/5) - n - 6/5) / sqrt(1 + LambertW(5*n)). - Vaclav Kotesovec, Jul 10 2022

Extensions

New name from Danny Rorabaugh, Oct 24 2015

A141004 Expansion of e.g.f. exp(Sum_{d|6} (exp(d*x)-1)/d).

Original entry on oeis.org

1, 4, 28, 258, 2892, 37778, 560124, 9256010, 168182044, 3325057826, 70934634236, 1621828212826, 39517131361884, 1021237022557682, 27877344103738940, 800976143703407210, 24148078430008534428, 761815206361252780098, 25087729474993723079548
Offset: 0

Views

Author

R. J. Mathar, Jul 11 2008

Keywords

Crossrefs

u[n,j] generates for j=1, A000110 Bell numbers; j=2, A002872 "Sorting numbers"; j=3, A002874 "Sorting numbers"; j=4, A141003 (Mathar); j=5, A036075 "Sorting numbers"; j=6, A141004 (Mathar); j=7, A036077 "Sorting numbers". - Wouter Meeussen, Dec 06 2008
Column k=6 of A162663.

Programs

  • Mathematica
    u[0,j_]:=1;u[k_,j_]:=u[k,j]=Sum[Binomial[k-1,i-1]Plus@@(u[k-i,j]#^(i-1)&/@Divisors[j]),{i,k}]; Table[u[n,6],{n,0,18}] (* Wouter Meeussen, Dec 06 2008 *)
Showing 1-5 of 5 results.