A036118 a(n) = 2^n mod 13.
1, 2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1, 2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1, 2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1, 2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1, 2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1, 2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7
Offset: 0
References
- I. M. Vinogradov, Elements of Number Theory, pp. 220 ff.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,-1,1).
Crossrefs
Cf. A008831.
Programs
-
GAP
List([0..95],n->PowerMod(2,n,13)); # Muniru A Asiru, Jan 31 2019
-
Magma
[2^n mod 13: n in [0..100]]; // G. C. Greubel, Oct 16 2018
-
Maple
[ seq(primroot(ithprime(i))^j mod ithprime(i),j=0..100) ];
-
Mathematica
PowerMod[2, Range[0, 70], 13] (* Wesley Ivan Hurt, Nov 20 2014 *)
-
PARI
a(n)=2^n%13 \\ Charles R Greathouse IV, Oct 07 2015
-
Sage
[power_mod(2,n,13) for n in range(0,72)] # Zerinvary Lajos, Nov 03 2009
Formula
a(n) = 13/2 + (-5/3 - (2/3)*sqrt(3))*cos(Pi*n/6) + (-1/3 - sqrt(3))*sin(Pi*n/6) - (13/6)*cos(Pi*n/2) - (13/6)*sin(Pi*n/2) + (-5/3 + (2/3)*sqrt(3))*cos(5*Pi*n/6) + (sqrt(3) - 1/3)*sin(5*Pi*n/6). - Richard Choulet, Dec 12 2008
a(n) = a(n-1) - a(n-6) + a(n-7). - R. J. Mathar, Apr 13 2010
G.f.: (1 + x + 2*x^2 + 4*x^3 - 5*x^4 + 3*x^5 + 7*x^6)/ ((1-x) * (x^2+1) * (x^4 - x^2 + 1)). - R. J. Mathar, Apr 13 2010
a(n) = 13 - a(n+6) = a(n+12) for all n in Z. - Michael Somos, Oct 17 2018
Comments