A036119 a(n) = 3^n mod 17.
1, 3, 9, 10, 13, 5, 15, 11, 16, 14, 8, 7, 4, 12, 2, 6, 1, 3, 9, 10, 13, 5, 15, 11, 16, 14, 8, 7, 4, 12, 2, 6, 1, 3, 9, 10, 13, 5, 15, 11, 16, 14, 8, 7, 4, 12, 2, 6, 1, 3, 9, 10, 13, 5, 15, 11, 16, 14, 8, 7, 4, 12, 2, 6, 1, 3, 9, 10
Offset: 0
References
- I. M. Vinogradov, Elements of Number Theory, pp. 220 ff.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,-1,1).
Crossrefs
Cf. A000244 (3^n).
Programs
-
GAP
List([0..55],n->PowerMod(3,n,17)); # Muniru A Asiru, Oct 17 2018
-
Magma
[Modexp(3, n, 17): n in [0..100]]; // Bruno Berselli, Mar 23 2016
-
Maple
i := pi(17) ; [ seq(primroot(ithprime(i))^j mod ithprime(i),j=0..100) ];
-
Mathematica
PowerMod[3, Range[0, 100], 17] (* Vincenzo Librandi, Mar 26 2016 *)
-
PARI
a(n)=lift(Mod(3,17)^n) \\ Charles R Greathouse IV, Mar 22 2016
-
Python
for n in range(0, 100): print(int(pow(3, n, 17)), end=' ') # Stefano Spezia, Oct 17 2018
-
Sage
[power_mod(3,n,17)for n in range(0, 68)] # Zerinvary Lajos, Nov 25 2009
Formula
G.f.: (1 + 2*x + 6*x^2 + x^3 + 3*x^4 - 8*x^5 + 10*x^6 - 4*x^7 + 6*x^8)/ ((1-x) * (1+x^8)). - R. J. Mathar, Apr 13 2010
a(n) = a(n-1) - a(n-8) + a(n-9). - R. J. Mathar, Apr 13 2010
a(n) = a(n-16). - Vincenzo Librandi, Mar 26 2016
a(n) = 17 - a(n+8) for all n in Z. - Michael Somos, Oct 17 2018