A036120 a(n) = 2^n mod 19.
1, 2, 4, 8, 16, 13, 7, 14, 9, 18, 17, 15, 11, 3, 6, 12, 5, 10, 1, 2, 4, 8, 16, 13, 7, 14, 9, 18, 17, 15, 11, 3, 6, 12, 5, 10, 1, 2, 4, 8, 16, 13, 7, 14, 9, 18, 17, 15, 11, 3, 6, 12, 5, 10, 1, 2, 4, 8, 16, 13, 7, 14, 9, 18, 17, 15
Offset: 0
References
- I. M. Vinogradov, Elements of Number Theory, pp. 220 ff.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, 0, 0, 0, 0, -1, 1).
Crossrefs
CF. A000079 (2^n).
Programs
-
GAP
List([0..60],n->PowerMod(2,n,19)); # Muniru A Asiru, Oct 17 2018
-
Magma
[Modexp(2, n, 19): n in [0..100]]; // G. C. Greubel, Oct 17 2018
-
Maple
with(numtheory) ; i := pi(19) ; [ seq(primroot(ithprime(i))^j mod ithprime(i), j=0..100) ];
-
Mathematica
PowerMod[2, Range[0, 100], 19] (* G. C. Greubel, Oct 17 2018 *)
-
PARI
a(n)=lift(Mod(2,19)^n) \\ Charles R Greathouse IV, Mar 22 2016
-
Python
for n in range(0, 100): print(int(pow(2, n, 19)), end=' ') # Stefano Spezia, Oct 17 2018
-
Sage
[power_mod(2,n,19) for n in range(0,66)] # Zerinvary Lajos, Nov 03 2009
Formula
a(n)= +a(n-1) -a(n-9) +a(n-10). - R. J. Mathar, Apr 13 2010
G.f.: (1+x+2*x^2+4*x^3+8*x^4-3*x^5-6*x^6+7*x^7-5*x^8+10*x^9)/ ((1-x) * (1+x) * (x^2- x+1) * (x^6-x^3+1)). - R. J. Mathar, Apr 13 2010
a(n) = a(n+18). - Vincenzo Librandi, Sep 09 2011
Comments