cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036120 a(n) = 2^n mod 19.

Original entry on oeis.org

1, 2, 4, 8, 16, 13, 7, 14, 9, 18, 17, 15, 11, 3, 6, 12, 5, 10, 1, 2, 4, 8, 16, 13, 7, 14, 9, 18, 17, 15, 11, 3, 6, 12, 5, 10, 1, 2, 4, 8, 16, 13, 7, 14, 9, 18, 17, 15, 11, 3, 6, 12, 5, 10, 1, 2, 4, 8, 16, 13, 7, 14, 9, 18, 17, 15
Offset: 0

Views

Author

Keywords

Comments

The sequence can be generated via a(n) = A061762(a(n-1)). Apparently any other choice of the first element leads also to periodic sequences, with fixed points of A061762 as special cases. - Zak Seidov, Aug 22 2007

References

  • I. M. Vinogradov, Elements of Number Theory, pp. 220 ff.

Crossrefs

CF. A000079 (2^n).

Programs

  • GAP
    List([0..60],n->PowerMod(2,n,19)); # Muniru A Asiru, Oct 17 2018
  • Magma
    [Modexp(2, n, 19): n in [0..100]]; // G. C. Greubel, Oct 17 2018
    
  • Maple
    with(numtheory) ; i := pi(19) ; [ seq(primroot(ithprime(i))^j mod ithprime(i), j=0..100) ];
  • Mathematica
    PowerMod[2, Range[0, 100], 19] (* G. C. Greubel, Oct 17 2018 *)
  • PARI
    a(n)=lift(Mod(2,19)^n) \\ Charles R Greathouse IV, Mar 22 2016
    
  • Python
    for n in range(0, 100): print(int(pow(2, n, 19)), end=' ') # Stefano Spezia, Oct 17 2018
    
  • Sage
    [power_mod(2,n,19) for n in range(0,66)] # Zerinvary Lajos, Nov 03 2009
    

Formula

a(n)= +a(n-1) -a(n-9) +a(n-10). - R. J. Mathar, Apr 13 2010
G.f.: (1+x+2*x^2+4*x^3+8*x^4-3*x^5-6*x^6+7*x^7-5*x^8+10*x^9)/ ((1-x) * (1+x) * (x^2- x+1) * (x^6-x^3+1)). - R. J. Mathar, Apr 13 2010
a(n) = a(n+18). - Vincenzo Librandi, Sep 09 2011