cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A064754 a(n) = n*8^n - 1.

Original entry on oeis.org

7, 127, 1535, 16383, 163839, 1572863, 14680063, 134217727, 1207959551, 10737418239, 94489280511, 824633720831, 7146825580543, 61572651155455, 527765581332479, 4503599627370495, 38280596832649215, 324259173170675711, 2738188573441261567, 23058430092136939519
Offset: 1

Views

Author

N. J. A. Sloane, Oct 19 2001

Keywords

Crossrefs

Programs

  • Magma
    [ n*8^n-1: n in [1..20]]; // Vincenzo Librandi, Sep 16 2011
  • Mathematica
    Table[n*8^n-1,{n,20}] (* or *) LinearRecurrence[{17,-80,64},{7,127,1535},20] (* Harvey P. Dale, May 20 2013 *)

Formula

G.f.: x*(64*x^2 - 8*x - 7)/((x-1)*(8*x-1)^2). - Colin Barker, Oct 15 2012
a(n) = 17*a(n-1) - 80*a(n-2) + 64*a(n-3); a(1)=7, a(2)=127, a(3)=1535. - Harvey P. Dale, May 20 2013
From Elmo R. Oliveira, May 05 2025: (Start)
E.g.f.: 1 + exp(x)*(8*x*exp(7*x) - 1).
a(n) = A036294(n) - 1. (End)

A064746 a(n) = n*8^n + 1.

Original entry on oeis.org

1, 9, 129, 1537, 16385, 163841, 1572865, 14680065, 134217729, 1207959553, 10737418241, 94489280513, 824633720833, 7146825580545, 61572651155457, 527765581332481, 4503599627370497, 38280596832649217, 324259173170675713, 2738188573441261569, 23058430092136939521
Offset: 0

Views

Author

N. J. A. Sloane, Oct 19 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n*8^n+1,{n,0,20}] (* or *) LinearRecurrence[{17,-80,64},{1,9,129},20] (* Harvey P. Dale, Jul 24 2012 *)
  • PARI
    a(n) = { n*8^n + 1 } \\ Harry J. Smith, Sep 24 2009

Formula

a(n) = 17*a(n-1) - 80*a(n-2) + 64*a(n-3), a(0)=1, a(1)=9, a(2)=129. - Harvey P. Dale, Jul 24 2012
G.f.: -(56*x^2-8*x+1)/((x-1)*(8*x-1)^2). - Colin Barker, Oct 15 2012
From Elmo R. Oliveira, May 04 2025: (Start)
E.g.f.: exp(x)*(1 + 8*x*exp(7*x)).
a(n) = A036294(n) + 1. (End)

A158749 a(n) = n*9^n.

Original entry on oeis.org

0, 9, 162, 2187, 26244, 295245, 3188646, 33480783, 344373768, 3486784401, 34867844010, 345191655699, 3389154437772, 33044255768277, 320275094369454, 3088366981419735, 29648323021629456, 283512088894331673, 2701703435345984178, 25666182635786849691, 243153309181138576020
Offset: 0

Views

Author

Zerinvary Lajos, Mar 25 2009

Keywords

Crossrefs

Programs

Formula

a(n) = n*9^n.
From R. J. Mathar, Mar 26 2009: (Start)
a(n) = 18*a(n-1) - 81*a(n-2) = A038299(n,1).
G.f.: 9*x/(1-9*x)^2. (End)
a(n) = A001019(n)*n. - Omar E. Pol, Mar 26 2009
From Amiram Eldar, Jul 20 2020: (Start)
Sum_{n>=1} 1/a(n) = log(9/8).
Sum_{n>=1} (-1)^(n+1)/a(n) = log(10/9). (End)
E.g.f.: 9*x*exp(9*x). - Elmo R. Oliveira, Sep 09 2024

A134574 Array, a(n,k) = total size of all n-length words on a k-letter alphabet, read by antidiagonals.

Original entry on oeis.org

1, 2, 2, 3, 8, 3, 4, 24, 18, 4, 5, 64, 81, 32, 5, 6, 160, 324, 192, 50, 6, 7, 384, 1215, 1024, 375, 72, 7, 8, 896, 4374, 5120, 2500, 648, 98, 8, 9, 2048, 15309, 24576, 15625, 5184, 1029, 128, 9, 10, 4608, 52488, 114688, 93750, 38880, 9604, 1536, 162, 10
Offset: 1

Views

Author

Ross La Haye, Jan 22 2008

Keywords

Examples

			a(2,2) = 8 because there are 2^2 = 4 2-length words on a 2 letter alphabet, each of size 2 and 2*4 = 8.
Array begins:
==================================================================
n\k|  1     2       3        4         5         6          7  ...
---|--------------------------------------------------------------
1  |  1     2       3        4         5         6          7  ...
2  |  2     8      18       32        50        72         98  ...
3  |  3    24      81      192       375       648       1029  ...
4  |  4    64     324     1024      2500      5184       9604  ...
5  |  5   160    1215     5120     15625     38880      84035  ...
6  |  6   384    4374    24576     93750    279936     705894  ...
7  |  7   896   15309   114688    546875   1959552    5764801  ...
8  |  8  2048   52488   524288   3125000  13436928   46118408  ...
9  |  9  4608  177147  2359296  17578125  90699264  363182463  ...
... - _Franck Maminirina Ramaharo_, Aug 07 2018
		

Crossrefs

Cf. a(n, 1) = a(1, k) = A000027(n); a(n, 2) = A036289(n); a(n, 3) = A036290(n); a(n, 4) = A018215(n); a(n, 5) = A036291(n); a(n, 6) = A036292(n); a(n, 7) = A036293(n); a(n, 8) = A036294(n); a(2, k) = A001105(k); a(3, k) = A117642(k); a(n, n) = A007778(n); a(n, n+1) = A066274(n+1): sum[a(i-1, n-i+1), {i, 1, n}] = A062807(n).

Programs

  • Mathematica
    t[n_, k_] := Sum[k^n, {j, n}]; Table[ t[n - k + 1, k], {n, 10}, {k, n}] // Flatten (* Robert G. Wilson v, Aug 07 2018 *)

Formula

a(n,k) = n*k^n.
O.g.f. (by columns): (k*x)/(-1+k*x)^2.
E.g.f. (by columns): k*x*exp(k*x).
a(n,k) = Sum[k^n,{j,1,n}] = n*Sum[C(n,m)*(k-1)^m,{m,0,n}]. - Ross La Haye, Jan 26 2008
Showing 1-4 of 4 results.