A064753
a(n) = n*7^n - 1.
Original entry on oeis.org
6, 97, 1028, 9603, 84034, 705893, 5764800, 46118407, 363182462, 2824752489, 21750594172, 166095446411, 1259557135290, 9495123019885, 71213422649144, 531726889113615, 3954718737782518, 29311444762388081, 216579008522089716, 1595845325952240019, 11729463145748964146
Offset: 1
For a(n)=n*k^n-1 cf. -
A000012 (k=0),
A001477 (k=1),
A003261 (k=2),
A060352 (k=3),
A060416 (k=4),
A064751 (k=5),
A064752 (k=6), this sequence (k=7),
A064754 (k=8),
A064755 (k=9),
A064756 (k=10),
A064757 (k=11),
A064758 (k=12).
-
[ n*7^n-1: n in [1..20]]; // Vincenzo Librandi, Sep 16 2011
-
k:= 7; f:= gfun:-rectoproc({1 + (k-1)*n + k*n*a(n-1) - (n-1)*a(n) = 0, a(1) = k-1}, a(n), remember): map(f, [$1..20]); # Georg Fischer, Feb 19 2021
-
Table[n 7^n-1,{n,20}] (* or *) LinearRecurrence[{15,-63,49},{6,97,1028},20] (* Harvey P. Dale, Feb 12 2022 *)
A064756
a(n) = n*10^n - 1.
Original entry on oeis.org
9, 199, 2999, 39999, 499999, 5999999, 69999999, 799999999, 8999999999, 99999999999, 1099999999999, 11999999999999, 129999999999999, 1399999999999999, 14999999999999999, 159999999999999999, 1699999999999999999, 17999999999999999999, 189999999999999999999, 1999999999999999999999
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Paul Leyland, Factors of Cullen and Woodall numbers.
- Paul Leyland, Generalized Cullen and Woodall numbers.
- Amelia Carolina Sparavigna, Some Groupoids and their Representations by Means of Integer Sequences, International Journal of Sciences (2019) Vol. 8, No. 10.
- Index entries for linear recurrences with constant coefficients, signature (21,-120,100).
Cf. for a(n) = n*k^n - 1: -
A000012 (k=0),
A001477 (k=1),
A003261 (k=2),
A060352 (k=3),
A060416 (k=4),
A064751 (k=5),
A064752 (k=6),
A064753 (k=7),
A064754 (k=8),
A064755 (k=9), this sequence (k=10),
A064757 (k=11),
A064758 (k=12).
-
[ n*10^n-1: n in [1..20]]; // Vincenzo Librandi, Sep 16 2011
-
k:= 10; f:= gfun:-rectoproc({1 + (k-1)*n + k*n*a(n-1) - (n-1)*a(n) = 0, a(1) = k-1}, a(n), remember): map(f, [$1..20]); # Georg Fischer, Feb 19 2021
-
Array[# 10^# - 1 &, 18] (* Michael De Vlieger, Jan 14 2020 *)
A064757
a(n) = n*11^n - 1.
Original entry on oeis.org
10, 241, 3992, 58563, 805254, 10629365, 136410196, 1714871047, 21221529218, 259374246009, 3138428376720, 37661140520651, 448795257871102, 5316497670165373, 62658722541234764, 735195677817154575, 8592599484487994106, 100078511642860166657, 1162022718519876379528
Offset: 1
Cf. for a(n) = n*k^n - 1: -
A000012(k=0),
A001477(k=1),
A003261 (k=2),
A060352 (k=3),
A060416 (k=4),
A064751 (k=5),
A064752 (k=6),
A064753 (k=7),
A064754 (k=8),
A064755 (k=9),
A064756 (k=10), this sequence (k=11),
A064758 (k=12).
-
[n*11^n - 1: n in [1..20]]; // Vincenzo Librandi, Sep 16 2011
-
k:= 11; f:= gfun:-rectoproc({1 + (k-1)*n + k*n*a(n-1) - (n-1)*a(n) = 0, a(1) = k-1}, a(n), remember): map(f, [$1..20]); # Georg Fischer, Feb 19 2021
-
Table[n*11^n-1,{n,20}] (* Harvey P. Dale, May 12 2019 *)
A064758
a(n) = n*12^n - 1.
Original entry on oeis.org
11, 287, 5183, 82943, 1244159, 17915903, 250822655, 3439853567, 46438023167, 619173642239, 8173092077567, 106993205379071, 1390911669927935, 17974858503684095, 231105323618795519, 2958148142320582655, 37716388814587428863, 479219999055934390271, 6070119988041835610111, 76675199848949502443519
Offset: 1
Cf. for a(n) = n*k^n - 1: -
A000012(k=0),
A001477(k=1),
A003261 (k=2),
A060352 (k=3),
A060416 (k=4),
A064751 (k=5),
A064752 (k=6),
A064753 (k=7),
A064754 (k=8),
A064755 (k=9),
A064756 (k=10),
A064757 (k=11), this sequence (k=12).
A242339
Numbers k such that k*8^k-1 is semiprime.
Original entry on oeis.org
3, 6, 9, 13, 21, 24, 32, 45, 61, 62, 73, 132, 150, 174, 187, 217, 266, 331, 534
Offset: 1
Cf. similar sequences listed in
A242273.
-
IsSemiprime:=func; [n: n in [2..80] | IsSemiprime(s) where s is n*8^n-1];
-
Select[Range[80], PrimeOmega[# 8^# - 1]==2&]
-
isok(n)=bigomega(n*8^n-1)==2 /* Anders Hellström, Aug 18 2015 */
Showing 1-5 of 5 results.
Comments