A064756
a(n) = n*10^n - 1.
Original entry on oeis.org
9, 199, 2999, 39999, 499999, 5999999, 69999999, 799999999, 8999999999, 99999999999, 1099999999999, 11999999999999, 129999999999999, 1399999999999999, 14999999999999999, 159999999999999999, 1699999999999999999, 17999999999999999999, 189999999999999999999, 1999999999999999999999
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Paul Leyland, Factors of Cullen and Woodall numbers.
- Paul Leyland, Generalized Cullen and Woodall numbers.
- Amelia Carolina Sparavigna, Some Groupoids and their Representations by Means of Integer Sequences, International Journal of Sciences (2019) Vol. 8, No. 10.
- Index entries for linear recurrences with constant coefficients, signature (21,-120,100).
Cf. for a(n) = n*k^n - 1: -
A000012 (k=0),
A001477 (k=1),
A003261 (k=2),
A060352 (k=3),
A060416 (k=4),
A064751 (k=5),
A064752 (k=6),
A064753 (k=7),
A064754 (k=8),
A064755 (k=9), this sequence (k=10),
A064757 (k=11),
A064758 (k=12).
-
[ n*10^n-1: n in [1..20]]; // Vincenzo Librandi, Sep 16 2011
-
k:= 10; f:= gfun:-rectoproc({1 + (k-1)*n + k*n*a(n-1) - (n-1)*a(n) = 0, a(1) = k-1}, a(n), remember): map(f, [$1..20]); # Georg Fischer, Feb 19 2021
-
Array[# 10^# - 1 &, 18] (* Michael De Vlieger, Jan 14 2020 *)
A064757
a(n) = n*11^n - 1.
Original entry on oeis.org
10, 241, 3992, 58563, 805254, 10629365, 136410196, 1714871047, 21221529218, 259374246009, 3138428376720, 37661140520651, 448795257871102, 5316497670165373, 62658722541234764, 735195677817154575, 8592599484487994106, 100078511642860166657, 1162022718519876379528
Offset: 1
Cf. for a(n) = n*k^n - 1: -
A000012(k=0),
A001477(k=1),
A003261 (k=2),
A060352 (k=3),
A060416 (k=4),
A064751 (k=5),
A064752 (k=6),
A064753 (k=7),
A064754 (k=8),
A064755 (k=9),
A064756 (k=10), this sequence (k=11),
A064758 (k=12).
-
[n*11^n - 1: n in [1..20]]; // Vincenzo Librandi, Sep 16 2011
-
k:= 11; f:= gfun:-rectoproc({1 + (k-1)*n + k*n*a(n-1) - (n-1)*a(n) = 0, a(1) = k-1}, a(n), remember): map(f, [$1..20]); # Georg Fischer, Feb 19 2021
-
Table[n*11^n-1,{n,20}] (* Harvey P. Dale, May 12 2019 *)
A064758
a(n) = n*12^n - 1.
Original entry on oeis.org
11, 287, 5183, 82943, 1244159, 17915903, 250822655, 3439853567, 46438023167, 619173642239, 8173092077567, 106993205379071, 1390911669927935, 17974858503684095, 231105323618795519, 2958148142320582655, 37716388814587428863, 479219999055934390271, 6070119988041835610111, 76675199848949502443519
Offset: 1
Cf. for a(n) = n*k^n - 1: -
A000012(k=0),
A001477(k=1),
A003261 (k=2),
A060352 (k=3),
A060416 (k=4),
A064751 (k=5),
A064752 (k=6),
A064753 (k=7),
A064754 (k=8),
A064755 (k=9),
A064756 (k=10),
A064757 (k=11), this sequence (k=12).
A242338
Numbers k such that k*7^k-1 is semiprime.
Original entry on oeis.org
1, 5, 12, 21, 42, 50, 60, 242, 272
Offset: 1
Cf. similar sequences listed in
A242273.
-
IsSemiprime:=func; [n: n in [2..80] | IsSemiprime(s) where s is n*7^n-1];
-
issemiprime:= proc(n) local F,t;
F:= ifactors(n,easy)[2];
t:= add(f[2],f=F);
if t = 1 then
if type(F[1][1],integer) then return false fi
elif t = 2 then
return not hastype(F,name)
else # t > 2
return false
fi;
F:= ifactors(n)[2];
return evalb(add(f[2],f=F)=2);
end proc:
select(n -> `if`(n::odd, isprime((n*7^n-1)/2),
issemiprime(n*7^n-1)), [$1..100]); # Robert Israel, Aug 19 2014
-
Select[Range[80], PrimeOmega[# 7^# - 1]==2&]
-
for(n=1,100,if(bigomega(n*7^n-1)==2,print1(n,", "))) \\ Derek Orr, Aug 20 2014
Showing 1-4 of 4 results.
Comments