A064753
a(n) = n*7^n - 1.
Original entry on oeis.org
6, 97, 1028, 9603, 84034, 705893, 5764800, 46118407, 363182462, 2824752489, 21750594172, 166095446411, 1259557135290, 9495123019885, 71213422649144, 531726889113615, 3954718737782518, 29311444762388081, 216579008522089716, 1595845325952240019, 11729463145748964146
Offset: 1
For a(n)=n*k^n-1 cf. -
A000012 (k=0),
A001477 (k=1),
A003261 (k=2),
A060352 (k=3),
A060416 (k=4),
A064751 (k=5),
A064752 (k=6), this sequence (k=7),
A064754 (k=8),
A064755 (k=9),
A064756 (k=10),
A064757 (k=11),
A064758 (k=12).
-
[ n*7^n-1: n in [1..20]]; // Vincenzo Librandi, Sep 16 2011
-
k:= 7; f:= gfun:-rectoproc({1 + (k-1)*n + k*n*a(n-1) - (n-1)*a(n) = 0, a(1) = k-1}, a(n), remember): map(f, [$1..20]); # Georg Fischer, Feb 19 2021
-
Table[n 7^n-1,{n,20}] (* or *) LinearRecurrence[{15,-63,49},{6,97,1028},20] (* Harvey P. Dale, Feb 12 2022 *)
A064757
a(n) = n*11^n - 1.
Original entry on oeis.org
10, 241, 3992, 58563, 805254, 10629365, 136410196, 1714871047, 21221529218, 259374246009, 3138428376720, 37661140520651, 448795257871102, 5316497670165373, 62658722541234764, 735195677817154575, 8592599484487994106, 100078511642860166657, 1162022718519876379528
Offset: 1
Cf. for a(n) = n*k^n - 1: -
A000012(k=0),
A001477(k=1),
A003261 (k=2),
A060352 (k=3),
A060416 (k=4),
A064751 (k=5),
A064752 (k=6),
A064753 (k=7),
A064754 (k=8),
A064755 (k=9),
A064756 (k=10), this sequence (k=11),
A064758 (k=12).
-
[n*11^n - 1: n in [1..20]]; // Vincenzo Librandi, Sep 16 2011
-
k:= 11; f:= gfun:-rectoproc({1 + (k-1)*n + k*n*a(n-1) - (n-1)*a(n) = 0, a(1) = k-1}, a(n), remember): map(f, [$1..20]); # Georg Fischer, Feb 19 2021
-
Table[n*11^n-1,{n,20}] (* Harvey P. Dale, May 12 2019 *)
A064758
a(n) = n*12^n - 1.
Original entry on oeis.org
11, 287, 5183, 82943, 1244159, 17915903, 250822655, 3439853567, 46438023167, 619173642239, 8173092077567, 106993205379071, 1390911669927935, 17974858503684095, 231105323618795519, 2958148142320582655, 37716388814587428863, 479219999055934390271, 6070119988041835610111, 76675199848949502443519
Offset: 1
Cf. for a(n) = n*k^n - 1: -
A000012(k=0),
A001477(k=1),
A003261 (k=2),
A060352 (k=3),
A060416 (k=4),
A064751 (k=5),
A064752 (k=6),
A064753 (k=7),
A064754 (k=8),
A064755 (k=9),
A064756 (k=10),
A064757 (k=11), this sequence (k=12).
A242341
Numbers k such that k*10^k - 1 is a semiprime.
Original entry on oeis.org
1, 6, 20, 29, 35, 40, 79, 164, 185, 198, 201, 218, 248, 249, 251, 264, 267, 274, 305, 323, 339, 344, 350, 362, 432, 539
Offset: 1
Cf. similar sequences listed in
A242273.
-
IsSemiprime:=func; [n: n in [2..70] | IsSemiprime(s) where s is n*10^n-1];
-
issemiprime:= proc(n) local F, t;
F:= ifactors(n, easy)[2];
t:= add(f[2], f=F);
if t = 1 then
if type(F[1][1], integer) then return false fi
elif t = 2 then
return not hastype(F, name)
else # t > 2
return false
fi;
F:= ifactors(n)[2];
return evalb(add(f[2], f=F)=2);
end proc:
select(t -> issemiprime(t*10^t-1), [$1..80]); # Robert Israel, Sep 04 2016
-
Select[Range[70], PrimeOmega[# 10^# - 1]==2&]
-
is(n)=bigomega(n*10^n-1)==2 \\ Charles R Greathouse IV, Sep 04 2016
Showing 1-4 of 4 results.
Comments