A064753
a(n) = n*7^n - 1.
Original entry on oeis.org
6, 97, 1028, 9603, 84034, 705893, 5764800, 46118407, 363182462, 2824752489, 21750594172, 166095446411, 1259557135290, 9495123019885, 71213422649144, 531726889113615, 3954718737782518, 29311444762388081, 216579008522089716, 1595845325952240019, 11729463145748964146
Offset: 1
For a(n)=n*k^n-1 cf. -
A000012 (k=0),
A001477 (k=1),
A003261 (k=2),
A060352 (k=3),
A060416 (k=4),
A064751 (k=5),
A064752 (k=6), this sequence (k=7),
A064754 (k=8),
A064755 (k=9),
A064756 (k=10),
A064757 (k=11),
A064758 (k=12).
-
[ n*7^n-1: n in [1..20]]; // Vincenzo Librandi, Sep 16 2011
-
k:= 7; f:= gfun:-rectoproc({1 + (k-1)*n + k*n*a(n-1) - (n-1)*a(n) = 0, a(1) = k-1}, a(n), remember): map(f, [$1..20]); # Georg Fischer, Feb 19 2021
-
Table[n 7^n-1,{n,20}] (* or *) LinearRecurrence[{15,-63,49},{6,97,1028},20] (* Harvey P. Dale, Feb 12 2022 *)
A064756
a(n) = n*10^n - 1.
Original entry on oeis.org
9, 199, 2999, 39999, 499999, 5999999, 69999999, 799999999, 8999999999, 99999999999, 1099999999999, 11999999999999, 129999999999999, 1399999999999999, 14999999999999999, 159999999999999999, 1699999999999999999, 17999999999999999999, 189999999999999999999, 1999999999999999999999
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Paul Leyland, Factors of Cullen and Woodall numbers.
- Paul Leyland, Generalized Cullen and Woodall numbers.
- Amelia Carolina Sparavigna, Some Groupoids and their Representations by Means of Integer Sequences, International Journal of Sciences (2019) Vol. 8, No. 10.
- Index entries for linear recurrences with constant coefficients, signature (21,-120,100).
Cf. for a(n) = n*k^n - 1: -
A000012 (k=0),
A001477 (k=1),
A003261 (k=2),
A060352 (k=3),
A060416 (k=4),
A064751 (k=5),
A064752 (k=6),
A064753 (k=7),
A064754 (k=8),
A064755 (k=9), this sequence (k=10),
A064757 (k=11),
A064758 (k=12).
-
[ n*10^n-1: n in [1..20]]; // Vincenzo Librandi, Sep 16 2011
-
k:= 10; f:= gfun:-rectoproc({1 + (k-1)*n + k*n*a(n-1) - (n-1)*a(n) = 0, a(1) = k-1}, a(n), remember): map(f, [$1..20]); # Georg Fischer, Feb 19 2021
-
Array[# 10^# - 1 &, 18] (* Michael De Vlieger, Jan 14 2020 *)
A064758
a(n) = n*12^n - 1.
Original entry on oeis.org
11, 287, 5183, 82943, 1244159, 17915903, 250822655, 3439853567, 46438023167, 619173642239, 8173092077567, 106993205379071, 1390911669927935, 17974858503684095, 231105323618795519, 2958148142320582655, 37716388814587428863, 479219999055934390271, 6070119988041835610111, 76675199848949502443519
Offset: 1
Cf. for a(n) = n*k^n - 1: -
A000012(k=0),
A001477(k=1),
A003261 (k=2),
A060352 (k=3),
A060416 (k=4),
A064751 (k=5),
A064752 (k=6),
A064753 (k=7),
A064754 (k=8),
A064755 (k=9),
A064756 (k=10),
A064757 (k=11), this sequence (k=12).
A064749
a(n) = n*11^n + 1.
Original entry on oeis.org
1, 12, 243, 3994, 58565, 805256, 10629367, 136410198, 1714871049, 21221529220, 259374246011, 3138428376722, 37661140520653, 448795257871104, 5316497670165375, 62658722541234766, 735195677817154577, 8592599484487994108, 100078511642860166659, 1162022718519876379530
Offset: 0
For a(n)=n*k^n+1:
A000012 (k=0),
A000027(n+1) (k=1),
A002064 (k=2),
A050914 (k=3),
A050915 (k=4),
A050916 (k=5),
A050917 (k=6),
A050919 (k=7),
A064746 (k=8),
A064747 (k=9),
A064748 (k=10), this sequence (k=11),
A064750 (k=12).
-
[n*11^n+1: n in [0..20]]; // Vincenzo Librandi, Sep 16 2011
-
k:= 11; f:= gfun:-rectoproc({-1 - (k-1)*n + k*n*a(n-1) - (n-1)*a(n) = 0, a(0) = 1, a(1) = k+1}, a(n), remember): map(f, [$0..20]); # Georg Fischer, Feb 19 2021
Showing 1-4 of 4 results.