cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036486 a(n) = ceiling((n^3)/2).

Original entry on oeis.org

0, 1, 4, 14, 32, 63, 108, 172, 256, 365, 500, 666, 864, 1099, 1372, 1688, 2048, 2457, 2916, 3430, 4000, 4631, 5324, 6084, 6912, 7813, 8788, 9842, 10976, 12195, 13500, 14896, 16384, 17969, 19652, 21438, 23328, 25327, 27436, 29660, 32000, 34461, 37044
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 1999

Keywords

Comments

a(n) is the number of compositions of even natural numbers into 3 parts < n. For example, a(2)=4 because compositions of even natural numbers into 3 parts < 2 are (0,0,0), (0,1,1), (1,0,1), and (1,1,0). a(3)=14 because compositions of even natural numbers into 3 parts <= 3 - 1 = 2 are (0,0,0), (0,1,1), (1,0,1), (1,1,0), (0,0,2), (0,2,0), (2,0,0), (1,1,2),(1,2,1),(2,1,1),(0,2,2),(2,0,2),(2,2,0) and (2,2,2). - Adi Dani, Jun 05 2011
Also the number of balls in a body-centered lattice cube with n layers. - K. G. Stier, Dec 26 2012

Crossrefs

Cf. A036487.

Programs

  • Magma
    [(2*n^3-(-1)^n+1)/4: n in [0..40]]; // Vincenzo Librandi, Jun 07 2011
    
  • Maple
    [ seq(ceil((n^3)/2), n=0..100) ];
    with (combinat):seq(count(Partition((n^3+1)), size=2), n=0..40); # Zerinvary Lajos, Mar 28 2008
  • Mathematica
    Table[Ceiling[n^3/2], {n, 0, 40}] (* Wesley Ivan Hurt, May 21 2014 *)
    LinearRecurrence[{3,-2,-2,3,-1},{0,1,4,14,32},50] (* Harvey P. Dale, Jan 14 2019 *)
  • PARI
    a(n)=(2*n^3-(-1)^n+1)/4 \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: x*(1+x+4*x^2) / ( (1+x)*(x-1)^4 ). - R. J. Mathar, Jun 06 2011
a(n) = (2*n^3 - (-1)^n + 1)/4. - Bruno Berselli, Jun 07 2011
a(n) = n^3 - A036487(n), where n^3 is the number of compositions of natural numbers into 3 parts < n. - R. J. Mathar, Jun 07 2011
a(n) = (n^3 + (n mod 2))/2. - Wesley Ivan Hurt, May 21 2014
E.g.f.: (x*(1 + 3*x + x^2)*cosh(x) + (1 + x + 3*x^2 + x^3)*sinh(x))/2. - Stefano Spezia, Sep 09 2022