cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036800 a(n) = -6 + 2^(n+1)*(3 - 2*n + n^2).

Original entry on oeis.org

0, 2, 18, 90, 346, 1146, 3450, 9722, 26106, 67578, 169978, 417786, 1007610, 2392058, 5603322, 12976122, 29753338, 67633146, 152567802, 341835770, 761266170, 1686110202, 3716153338, 8153726970, 17817403386, 38788923386
Offset: 0

Views

Author

Keywords

Comments

This sequence is a part of a class of sequences of the type: a(n) = sum(i=0,n,(C^i)*(i^k)). This sequence has C=2, k=2. Sequence A036799 has C=2, k=1. Suppose C>=2, k>=1 are integers. What is the general closed form for a(n)? - Ctibor O. Zizka, Feb 07 2008

References

  • M. Petkovsek et al., A=B, Peters, 1996, p. 97.
  • Jolley, Summation of Series, Dover (1961), p. 6.

Crossrefs

Programs

Formula

a(n) = Sum_{k=0..n} 2^k * k^2. - Benoit Cloitre, Jun 11 2003
From R. J. Mathar, Oct 03 2011: (Start)
G.f.: 2*x*(1+2*x) / ( (1-x)*(1-2*x)^3 ).
a(n) = 2*A036826(n). (End)
a(0)=0, a(1)=2, a(2)=18, a(3)=90, a(n)=7*a(n-1)-18*a(n-2)+ 20*a(n-3)- 8*a(n-4). - Harvey P. Dale, Jun 13 2015
a(n) = Sum_{k=0..n} Sum_{i=0..n} k^2 * C(k,i). - Wesley Ivan Hurt, Sep 21 2017
E.g.f.: 2*(3 -2*x +4*x^2)*exp(2*x) -6*exp(x). - G. C. Greubel, Mar 31 2021