A036967 4-full numbers: if a prime p divides k then so does p^4.
1, 16, 32, 64, 81, 128, 243, 256, 512, 625, 729, 1024, 1296, 2048, 2187, 2401, 2592, 3125, 3888, 4096, 5184, 6561, 7776, 8192, 10000, 10368, 11664, 14641, 15552, 15625, 16384, 16807, 19683, 20000, 20736, 23328, 28561, 31104, 32768, 34992
Offset: 1
References
- E. Kraetzel, Lattice Points, Kluwer, Chap. 7, p. 276.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000 (first 300 terms from T. D. Noe)
Programs
-
Haskell
import Data.Set (singleton, deleteFindMin, fromList, union) a036967 n = a036967_list !! (n-1) a036967_list = 1 : f (singleton z) [1, z] zs where f s q4s p4s'@(p4:p4s) | m < p4 = m : f (union (fromList $ map (* m) ps) s') q4s p4s' | otherwise = f (union (fromList $ map (* p4) q4s) s) (p4:q4s) p4s where ps = a027748_row m (m, s') = deleteFindMin s (z:zs) = a030514_list -- Reinhard Zumkeller, Jun 03 2015
-
Mathematica
Join[{1},Select[Range[35000],Min[Transpose[FactorInteger[#]][[2]]]>3&]] (* Harvey P. Dale, Jun 05 2012 *)
-
PARI
is(n)=n==1 || vecmin(factor(n)[,2])>3 \\ Charles R Greathouse IV, Sep 17 2015
-
PARI
M(v,u,lim)=vecsort(concat(vector(#v, i, my(m=lim\v[i]); v[i]*select(t->t<=m, u)))) Gen(lim,k)={my(v=[1]); forprime(p=2, sqrtnint(lim, k), v=M(v, concat([1], vector(logint(lim,p)-k+1,e,p^(e+k-1))), lim));v} Gen(35000,4) \\ Andrew Howroyd, Sep 10 2024
-
Python
from sympy import factorint A036967_list = [n for n in range(1,10**5) if min(factorint(n).values(),default=4) >= 4] # Chai Wah Wu, Aug 18 2021
-
Python
from math import gcd from sympy import integer_nthroot, factorint def A036967(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): c = n+x for u in range(1,integer_nthroot(x,7)[0]+1): if all(d<=1 for d in factorint(u).values()): for w in range(1,integer_nthroot(a:=x//u**7,6)[0]+1): if gcd(w,u)==1 and all(d<=1 for d in factorint(w).values()): for y in range(1,integer_nthroot(z:=a//w**6,5)[0]+1): if gcd(w,y)==1 and gcd(u,y)==1 and all(d<=1 for d in factorint(y).values()): c -= integer_nthroot(z//y**5,4)[0] return c return bisection(f,n,n) # Chai Wah Wu, Sep 10 2024
Formula
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + 1/(p^3*(p-1))) = 1.1488462139214317030108176090790939019972506733993367867997411290952527... - Amiram Eldar, Jul 09 2020
Extensions
More terms from Erich Friedman
Corrected by Vladeta Jovovic, Aug 17 2002
Comments