cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036967 4-full numbers: if a prime p divides k then so does p^4.

Original entry on oeis.org

1, 16, 32, 64, 81, 128, 243, 256, 512, 625, 729, 1024, 1296, 2048, 2187, 2401, 2592, 3125, 3888, 4096, 5184, 6561, 7776, 8192, 10000, 10368, 11664, 14641, 15552, 15625, 16384, 16807, 19683, 20000, 20736, 23328, 28561, 31104, 32768, 34992
Offset: 1

Views

Author

Keywords

Comments

a(m) mod prime(n) > 0 for m < A258601(n); a(A258601(n)) = A030514(n) = prime(n)^4. - Reinhard Zumkeller, Jun 06 2015

References

  • E. Kraetzel, Lattice Points, Kluwer, Chap. 7, p. 276.

Crossrefs

A030514 is a subsequence.

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, fromList, union)
    a036967 n = a036967_list !! (n-1)
    a036967_list = 1 : f (singleton z) [1, z] zs where
       f s q4s p4s'@(p4:p4s)
         | m < p4 = m : f (union (fromList $ map (* m) ps) s') q4s p4s'
         | otherwise = f (union (fromList $ map (* p4) q4s) s) (p4:q4s) p4s
         where ps = a027748_row m
               (m, s') = deleteFindMin s
       (z:zs) = a030514_list
    -- Reinhard Zumkeller, Jun 03 2015
    
  • Mathematica
    Join[{1},Select[Range[35000],Min[Transpose[FactorInteger[#]][[2]]]>3&]] (* Harvey P. Dale, Jun 05 2012 *)
  • PARI
    is(n)=n==1 || vecmin(factor(n)[,2])>3 \\ Charles R Greathouse IV, Sep 17 2015
    
  • PARI
    M(v,u,lim)=vecsort(concat(vector(#v, i, my(m=lim\v[i]); v[i]*select(t->t<=m, u))))
    Gen(lim,k)={my(v=[1]); forprime(p=2, sqrtnint(lim, k), v=M(v, concat([1], vector(logint(lim,p)-k+1,e,p^(e+k-1))), lim));v}
    Gen(35000,4) \\ Andrew Howroyd, Sep 10 2024
    
  • Python
    from sympy import factorint
    A036967_list = [n for n in range(1,10**5) if min(factorint(n).values(),default=4) >= 4] # Chai Wah Wu, Aug 18 2021
    
  • Python
    from math import gcd
    from sympy import integer_nthroot, factorint
    def A036967(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c = n+x
            for u in range(1,integer_nthroot(x,7)[0]+1):
                if all(d<=1 for d in factorint(u).values()):
                    for w in range(1,integer_nthroot(a:=x//u**7,6)[0]+1):
                        if gcd(w,u)==1 and all(d<=1 for d in factorint(w).values()):
                            for y in range(1,integer_nthroot(z:=a//w**6,5)[0]+1):
                                if gcd(w,y)==1 and gcd(u,y)==1 and all(d<=1 for d in factorint(y).values()):
                                    c -= integer_nthroot(z//y**5,4)[0]
            return c
        return bisection(f,n,n) # Chai Wah Wu, Sep 10 2024

Formula

Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + 1/(p^3*(p-1))) = 1.1488462139214317030108176090790939019972506733993367867997411290952527... - Amiram Eldar, Jul 09 2020

Extensions

More terms from Erich Friedman
Corrected by Vladeta Jovovic, Aug 17 2002