A037027 Skew Fibonacci-Pascal triangle read by rows.
1, 1, 1, 2, 2, 1, 3, 5, 3, 1, 5, 10, 9, 4, 1, 8, 20, 22, 14, 5, 1, 13, 38, 51, 40, 20, 6, 1, 21, 71, 111, 105, 65, 27, 7, 1, 34, 130, 233, 256, 190, 98, 35, 8, 1, 55, 235, 474, 594, 511, 315, 140, 44, 9, 1, 89, 420, 942, 1324, 1295, 924, 490, 192, 54, 10, 1, 144, 744, 1836
Offset: 0
Examples
Ratio of row polynomials R(3)/R(2) = (3 + 5*x + 3*x^2 + x^3)/(2 + 2*x + x^2) = [1+x; 1+x, 1+x]. Triangle begins: 1; 1, 1; 2, 2, 1; 3, 5, 3, 1; 5, 10, 9, 4, 1; 8, 20, 22, 14, 5, 1; 13, 38, 51, 40, 20, 6, 1; 21, 71, 111, 105, 65, 27, 7, 1; 34, 130, 233, 256, 190, 98, 35, 8, 1; 55, 235, 474, 594, 511, 315, 140, 44, 9, 1; 89, 420, 942, 1324, 1295, 924, 490, 192, 54, 10, 1;
Links
- Reinhard Zumkeller, Rows n = 0..150 of triangle, flattened
- Harlan J. Brothers, Pascal's Prism: Supplementary Material
- Milan Janjić, Words and Linear Recurrences, J. Int. Seq. 21 (2018), #18.1.4.
- T. Mansour, Generalization of some identities involving the Fibonacci numbers, arXiv:math/0301157 [math.CO], 2003.
- P. Moree, Convoluted convolved Fibonacci numbers, arXiv:math/0311205 [math.CO], 2003.
- Yidong Sun, Numerical Triangles and Several Classical Sequences, Fib. Quart. 43, no. 4, Nov. 2005, pp. 359-370.
- Eric Weisstein's World of Mathematics, Morgan-Voyce Polynomials.
Crossrefs
Programs
-
Haskell
a037027 n k = a037027_tabl !! n !! k a037027_row n = a037027_tabl !! n a037027_tabl = [1] : [1,1] : f [1] [1,1] where f xs ys = ys' : f ys ys' where ys' = zipWith3 (\u v w -> u + v + w) (ys ++ [0]) (xs ++ [0,0]) ([0] ++ ys) -- Reinhard Zumkeller, Jul 07 2012
-
Maple
T := (n,k) -> `if`(n=0,1,binomial(n,k)*hypergeom([(k-n)/2, (k-n+1)/2], [-n], -4)): seq(seq(simplify(T(n,k)), k=0..n), n=0..10); # Peter Luschny, Apr 25 2016 # Uses function PMatrix from A357368. Adds a row above and a column to the left. PMatrix(10, n -> combinat:-fibonacci(n)); # Peter Luschny, Oct 07 2022
-
Mathematica
Mv[x, -1] = 0; Mv[x, 0] = 1; Mv[x, 1] = 1 + x; Mv[x_, n_] := Mv[x, n] = ExpandAll[(x + 1)*Mv[x, n - 1] + Mv[x, n - 2]]; Table[ CoefficientList[ Mv[x, n], x], {n, 0, 10}] // Flatten (* Roger L. Bagula, Apr 09 2008 *) Abs[Flatten[Table[CoefficientList[CharacteristicPolynomial[Array[KroneckerDelta[#1,#2]+KroneckerDelta[#1,#2+1]*I+KroneckerDelta[#1,#2-1]*I&,{n,n}],x],x],{n,1,20}]]] (* John M. Campbell, Aug 23 2011 *) T[n_, k_] := Binomial[n, k] Hypergeometric2F1[(k-n)/2, (k-n+1)/2, -n, -4]; Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 16 2019, after Peter Luschny *)
-
PARI
{T(n, k) = if( k<0 || k>n, 0, if( n==0 && k==0, 1, T(n-1, k) + T(n-1, k-1) + T(n-2, k)))}; /* Michael Somos, Sep 29 2003 */
-
PARI
T(n,k)=if(n
Paul D. Hanna, Feb 27 2004
Formula
T(n, m) = T'(n-1, m) + T'(n-2, m) + T'(n-1, m-1), where T'(n, m) = T(n, m) for n >= 0 and 0< = m <= n and T'(n, m) = 0 otherwise.
G.f.: 1/(1 - y - y*z - y^2).
G.f. for k-th column: x/(1-x-x^2)^k.
T(n, m) = Sum_{k=0..n-m} binomial(m+k, m)*binomial(k, n-k-m), n >= m >= 0, otherwise 0. - Wolfdieter Lang, Jun 17 2002
T(n, m) = ((n-m+1)*T(n, m-1) + 2*(n+m)*T(n-1, m-1))/(5*m), n >= m >= 1; T(n, 0)= A000045(n+1); T(n, m)= 0 if n < m. - Wolfdieter Lang, Apr 12 2000
Chebyshev coefficient triangle (abs(A049310)) times Pascal's triangle (A007318) as product of lower triangular matrices. T(n, k) = Sum_{j=0..n} binomial((n+j)/2, j)*(1+(-1)^(n+j))*binomial(j, k)/2. - Paul Barry, Dec 22 2004
Let R(n) = n-th row polynomial in x, with R(0)=1, then R(n+1)/R(n) equals the continued fraction [1+x;1+x, ...(1+x) occurring (n+1) times ..., 1+x] for n >= 0. - Paul D. Hanna, Feb 27 2004
T(n,k) = Sum_{j=0..n} binomial(n-j,j)*binomial(n-2*j,k); in Egorychev notation, T(n,k) = res_w(1-w-w^2)^(-k-1)*w^(-n+k+1). - Paul Barry, Sep 13 2006
Sum_{k=0..n} T(n,k)*x^k = A000045(n+1), A000129(n+1), A006190(n+1), A001076(n+1), A052918(n), A005668(n+1), A054413(n), A041025(n), A099371(n+1), A041041(n), A049666(n+1), A041061(n), A140455(n+1), A041085(n), A154597(n+1), A041113(n) for x = 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 respectively. - Philippe Deléham, Nov 29 2009
T((m+1)*n+r-1, m*n+r-1)*r/(m*n+r) = Sum_{k=1..n} k/n*T((m+1)*n-k-1, m*n-1)*(r+k,r), n >= m > 1.
T(n-1,m-1) = (m/n)*Sum_{k=1..n-m+1} k*A000045(k)*T(n-k-1,m-2), n >= m > 1. - Vladimir Kruchinin, Mar 17 2011
T(n,k) = binomial(n,k)*hypergeom([(k-n)/2, (k-n+1)/2], [-n], -4) for n >= 1. - Peter Luschny, Apr 25 2016
Extensions
Examples from Paul D. Hanna, Feb 27 2004
Comments