cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A037227 If n = 2^m*k, k odd, then a(n) = 2*m+1.

Original entry on oeis.org

1, 3, 1, 5, 1, 3, 1, 7, 1, 3, 1, 5, 1, 3, 1, 9, 1, 3, 1, 5, 1, 3, 1, 7, 1, 3, 1, 5, 1, 3, 1, 11, 1, 3, 1, 5, 1, 3, 1, 7, 1, 3, 1, 5, 1, 3, 1, 9, 1, 3, 1, 5, 1, 3, 1, 7, 1, 3, 1, 5, 1, 3, 1, 13, 1, 3, 1, 5, 1, 3, 1, 7, 1, 3, 1, 5, 1, 3, 1, 9, 1, 3, 1, 5, 1, 3, 1, 7, 1, 3, 1, 5, 1, 3, 1, 11, 1, 3, 1, 5, 1, 3
Offset: 1

Views

Author

Keywords

Comments

Take the number of rightmost zeros in the binary expansion of n, double it, and increment it by 1. - Ralf Stephan, Aug 22 2013
Gives the maximum possible number of n X n complex Hermitian matrices with the property that all of their nonzero real linear combinations are nonsingular (see Adams et al. reference). - Nathaniel Johnston, Dec 11 2013

Crossrefs

Programs

  • Haskell
    a037227 = (+ 1) . (* 2) . a007814  -- Reinhard Zumkeller, Jun 30 2012
    
  • Magma
    [2*Valuation(n, 2)+1: n in [1..120]]; // Vincenzo Librandi, Jun 19 2019
    
  • Maple
    nmax:=102: for p from 0 to ceil(simplify(log[2](nmax))) do for n from 1 to ceil(nmax/(p+2)) do a((2*n-1)*2^p):= 2*p+1: od: od: seq(a(n), n=1..nmax);  # Johannes W. Meijer, Feb 07 2013
  • Mathematica
    a[n_] := Sum[(-1)^(d+1)*MoebiusMu[d]*DivisorSigma[0, n/d], {d, Divisors[n]}]; Table[a[n], {n, 1, 102}] (* Jean-François Alcover, Dec 31 2012, after Vladeta Jovovic *)
    f[n_]:=Module[{z=Last[Split[IntegerDigits[n,2]]]},If[Union[z]={0},2* Length[ z]+1,1]]; Array[f,110] (* Harvey P. Dale, Jun 16 2019, after Ralf Stephan *)
    Table[2 IntegerExponent[n, 2] + 1, {n, 120}] (* Vincenzo Librandi, Jun 19 2019 *)
  • PARI
    a(n)=2*valuation(n,2)+1 \\ Charles R Greathouse IV, May 21 2015
    
  • Python
    def A037227(n): return ((~n & n-1).bit_length()<<1)+1 # Chai Wah Wu, Jul 05 2022
  • R
    maxrow <- 6 # by choice
    a <- 1
    for(m in 0:maxrow){
    for(k in 0:(2^m-1)) {
       a[2^(m+1)    +k] <- a[2^m+k]
       a[2^(m+1)+2^m+k] <- a[2^m+k]
    }
       a[2^(m+1)      ] <- a[2^(m+1)] + 2
    }
    a
    # Yosu Yurramendi, May 21 2015
    

Formula

a(n) = Sum_{d divides n} (-1)^(d+1)*mu(d)*tau(n/d). Multiplicative with a(p^e) = 2*e+1 if p = 2; 1 if p > 2. - Vladeta Jovovic, Apr 27 2003
a(n) = a(n-1)+(-1)^n*(a(floor(n/2))+1). - Vladeta Jovovic, Apr 27 2003
a(2*n) = a(n) + 2, a(2*n+1) = 1. a(n) = 2*A007814(n) + 1. - Ralf Stephan, Oct 07 2003
a(A005408(n)) = 1; a(A016825(n)) = 3; A017113(a(n)) = 5; A051062(a(n)) = 7. - Reinhard Zumkeller, Jun 30 2012
a((2*n-1)*2^p) = 2*p+1, p >= 0 and n >= 1. - Johannes W. Meijer, Feb 07 2013
From Peter Bala, Feb 07 2016: (Start)
a(n) = ( A002487(n-1) + A002487(n+1) )/A002487(n).
a(n*2^(k+1) + 2^k) = 2*k + 1 for n,k >= 0; thus a(2*n+1) = 1, a(4*n+2) = 3, a(8*n+4) = 5, a(16*n+8) = 7 and so on. Note the square array ( n*2^(k+1) + 2^k - 1 )n, k>=0 is the transpose of A075300.
G.f.: Sum_{n >= 0} (2*n + 1)*x^(2^n)/(1 - x^(2^(n+1))). (End)
a(n) = 2*floor(A002487(n-1)/A002487(n))+1 for n > 1. - I. V. Serov, Jun 15 2017
From Amiram Eldar, Nov 29 2022: (Start)
Dirichlet g.f.: zeta(s)*(2^s+1)/(2^s-1).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 3. (End)

Extensions

More terms from Erich Friedman