A037227 If n = 2^m*k, k odd, then a(n) = 2*m+1.
1, 3, 1, 5, 1, 3, 1, 7, 1, 3, 1, 5, 1, 3, 1, 9, 1, 3, 1, 5, 1, 3, 1, 7, 1, 3, 1, 5, 1, 3, 1, 11, 1, 3, 1, 5, 1, 3, 1, 7, 1, 3, 1, 5, 1, 3, 1, 9, 1, 3, 1, 5, 1, 3, 1, 7, 1, 3, 1, 5, 1, 3, 1, 13, 1, 3, 1, 5, 1, 3, 1, 7, 1, 3, 1, 5, 1, 3, 1, 9, 1, 3, 1, 5, 1, 3, 1, 7, 1, 3, 1, 5, 1, 3, 1, 11, 1, 3, 1, 5, 1, 3
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n=1..1024
- J. F. Adams, P. D. Lax, and R. S. Phillips, On matrices whose real linear combinations are nonsingular, Proceedings of the American Mathematical Society, 16:318-322, 1965.
- D. B. Shapiro, Problem 10456: Anticommuting Matrices, Amer. Math. Monthly, 105 (1998), 565-566.
- Index entries for sequences related to binary expansion of n
Programs
-
Haskell
a037227 = (+ 1) . (* 2) . a007814 -- Reinhard Zumkeller, Jun 30 2012
-
Magma
[2*Valuation(n, 2)+1: n in [1..120]]; // Vincenzo Librandi, Jun 19 2019
-
Maple
nmax:=102: for p from 0 to ceil(simplify(log[2](nmax))) do for n from 1 to ceil(nmax/(p+2)) do a((2*n-1)*2^p):= 2*p+1: od: od: seq(a(n), n=1..nmax); # Johannes W. Meijer, Feb 07 2013
-
Mathematica
a[n_] := Sum[(-1)^(d+1)*MoebiusMu[d]*DivisorSigma[0, n/d], {d, Divisors[n]}]; Table[a[n], {n, 1, 102}] (* Jean-François Alcover, Dec 31 2012, after Vladeta Jovovic *) f[n_]:=Module[{z=Last[Split[IntegerDigits[n,2]]]},If[Union[z]={0},2* Length[ z]+1,1]]; Array[f,110] (* Harvey P. Dale, Jun 16 2019, after Ralf Stephan *) Table[2 IntegerExponent[n, 2] + 1, {n, 120}] (* Vincenzo Librandi, Jun 19 2019 *)
-
PARI
a(n)=2*valuation(n,2)+1 \\ Charles R Greathouse IV, May 21 2015
-
Python
def A037227(n): return ((~n & n-1).bit_length()<<1)+1 # Chai Wah Wu, Jul 05 2022
-
R
maxrow <- 6 # by choice a <- 1 for(m in 0:maxrow){ for(k in 0:(2^m-1)) { a[2^(m+1) +k] <- a[2^m+k] a[2^(m+1)+2^m+k] <- a[2^m+k] } a[2^(m+1) ] <- a[2^(m+1)] + 2 } a # Yosu Yurramendi, May 21 2015
Formula
a(n) = Sum_{d divides n} (-1)^(d+1)*mu(d)*tau(n/d). Multiplicative with a(p^e) = 2*e+1 if p = 2; 1 if p > 2. - Vladeta Jovovic, Apr 27 2003
a(n) = a(n-1)+(-1)^n*(a(floor(n/2))+1). - Vladeta Jovovic, Apr 27 2003
a(2*n) = a(n) + 2, a(2*n+1) = 1. a(n) = 2*A007814(n) + 1. - Ralf Stephan, Oct 07 2003
a(A005408(n)) = 1; a(A016825(n)) = 3; A017113(a(n)) = 5; A051062(a(n)) = 7. - Reinhard Zumkeller, Jun 30 2012
a((2*n-1)*2^p) = 2*p+1, p >= 0 and n >= 1. - Johannes W. Meijer, Feb 07 2013
From Peter Bala, Feb 07 2016: (Start)
a(n*2^(k+1) + 2^k) = 2*k + 1 for n,k >= 0; thus a(2*n+1) = 1, a(4*n+2) = 3, a(8*n+4) = 5, a(16*n+8) = 7 and so on. Note the square array ( n*2^(k+1) + 2^k - 1 )n, k>=0 is the transpose of A075300.
G.f.: Sum_{n >= 0} (2*n + 1)*x^(2^n)/(1 - x^(2^(n+1))). (End)
From Amiram Eldar, Nov 29 2022: (Start)
Dirichlet g.f.: zeta(s)*(2^s+1)/(2^s-1).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 3. (End)
Extensions
More terms from Erich Friedman
Comments