A037451 a(n) = Fibonacci(n) * Fibonacci(2*n).
0, 1, 3, 16, 63, 275, 1152, 4901, 20727, 87856, 372075, 1576279, 6676992, 28284569, 119814747, 507544400, 2149990983, 9107510539, 38580029568, 163427634589, 692290558575, 2932589884016, 12422650070163, 52623190204271, 222915410823168, 944284833600625, 4000054745057907, 16944503814103696, 71778070001033487
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Eric Weisstein, Fibonacci Number (MathWorld).
- Index entries for linear recurrences with constant coefficients, signature (3,6,-3,-1).
Programs
-
Magma
[Fibonacci(n)*Fibonacci(2*n): n in [0..30]]; // Vincenzo Librandi, Apr 18 2011
-
Maple
seq((fibonacci(2*n)*fibonacci(n)), n=0..25); # Zerinvary Lajos, Jun 24 2006
-
Mathematica
Table[Fibonacci[n]Fibonacci[2n],{n,0,40}] (* Harvey P. Dale, Mar 13 2011 *)
-
PARI
concat([0], Vec( x*(1+x^2) / ((1+x-x^2)*(1-4*x-x^2)) + O(x^66) ) ) \\ Joerg Arndt, Aug 26 2014
Formula
From Emanuele Munarini, Jul 18 2003: (Start)
G.f.: ( x + x^3 )/( 1 - 3 x - 6 x^2 + 3 x^3 + x^4 ).
a(n+4) = 3*a(n+3) + 6*a(n+2) - 3*a(n+1) - a(n).
(End)
G.f.: x*(1+x^2) / ((1+x-x^2)*(1-4*x-x^2)). - Joerg Arndt, Aug 26 2014
a(n) = (1/5)*(Lucas(3*n) - (-1)^n*Lucas(n)) = (1/5)*(Lucas(3*n) - Lucas(-n)). In general, for r = s (mod 2) the sequence Lucas(r*n) - Lucas(s*n) is a divisibility sequence. Cf. A273622. - Peter Bala, May 27 2016
Lim_{n->infinity} a(n+1)/a(n) = 2 + sqrt(5) = A098317. - Ilya Gutkovskiy, Jun 01 2016
a(n) = (-(1/2*(-1-sqrt(5)))^n+(2-sqrt(5))^n-(1/2*(-1+sqrt(5)))^n+(2+sqrt(5))^n)/5. - Colin Barker, Jun 03 2016
Comments