cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A037451 a(n) = Fibonacci(n) * Fibonacci(2*n).

Original entry on oeis.org

0, 1, 3, 16, 63, 275, 1152, 4901, 20727, 87856, 372075, 1576279, 6676992, 28284569, 119814747, 507544400, 2149990983, 9107510539, 38580029568, 163427634589, 692290558575, 2932589884016, 12422650070163, 52623190204271, 222915410823168, 944284833600625, 4000054745057907, 16944503814103696, 71778070001033487
Offset: 0

Views

Author

Gary W. Adamson, Feb 01 2000

Keywords

Comments

Let F(n) = Fibonacci(n), then abs(det([F(n), F(n+k); F(n+2k), F(n+3k)])) = a(k), independent of n. - R. M. Welukar, Aug 26 2014
From Joerg Arndt, Aug 26 2014: (Start)
This is a special case of Johnson's identity (relation 32 in the Mathworld link).
F(a)*F(b) - F(c)*F(d) = (-1)^r*(F(a-r)*F(b-r) - F(c-r)*F(d-r)), where a+b = c+d and r arbitrary.
Here a = n, b = n+3*k, c = n+k, d = n+2*k, and r = c, so that
(-1)^r*(F(a-r)*F(b-r) - F(c-r)*F(d-r)) =
(-1)^c*(F(a-c)*F(b-c) - F(c-c)*F(d-c)) =
(-1)^c*(F(a-c)*F(b-c) - 0) =
(-1)^c*(F(-k)*F(-2*k)), taking the absolute value gives a(k).
(End)
Let L(n) = A000032(n), then abs(det([L(n), L(n+k); L(n+2k), L(n+3k)])) = 5*a(k), independent of n. - M. N. Deshpande and R. M. Welukar, Aug 30 2014

Crossrefs

Programs

  • Magma
    [Fibonacci(n)*Fibonacci(2*n): n in [0..30]]; // Vincenzo Librandi, Apr 18 2011
    
  • Maple
    seq((fibonacci(2*n)*fibonacci(n)), n=0..25); # Zerinvary Lajos, Jun 24 2006
  • Mathematica
    Table[Fibonacci[n]Fibonacci[2n],{n,0,40}] (* Harvey P. Dale, Mar 13 2011 *)
  • PARI
    concat([0], Vec( x*(1+x^2) / ((1+x-x^2)*(1-4*x-x^2)) + O(x^66) ) ) \\ Joerg Arndt, Aug 26 2014

Formula

From Emanuele Munarini, Jul 18 2003: (Start)
G.f.: ( x + x^3 )/( 1 - 3 x - 6 x^2 + 3 x^3 + x^4 ).
a(n+4) = 3*a(n+3) + 6*a(n+2) - 3*a(n+1) - a(n).
(End)
G.f.: x*(1+x^2) / ((1+x-x^2)*(1-4*x-x^2)). - Joerg Arndt, Aug 26 2014
a(n) = (1/5)*(Lucas(3*n) - (-1)^n*Lucas(n)) = (1/5)*(Lucas(3*n) - Lucas(-n)). In general, for r = s (mod 2) the sequence Lucas(r*n) - Lucas(s*n) is a divisibility sequence. Cf. A273622. - Peter Bala, May 27 2016
Lim_{n->infinity} a(n+1)/a(n) = 2 + sqrt(5) = A098317. - Ilya Gutkovskiy, Jun 01 2016
a(n) = (-(1/2*(-1-sqrt(5)))^n+(2-sqrt(5))^n-(1/2*(-1+sqrt(5)))^n+(2+sqrt(5))^n)/5. - Colin Barker, Jun 03 2016