cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A131293 Concatenate a(n-2) and a(n-1) to get a(n); start with a(0)=0, a(1)=1, delete the leading zero. Also: concatenate Fibonacci(n) 1's.

Original entry on oeis.org

0, 1, 1, 11, 111, 11111, 11111111, 1111111111111, 111111111111111111111, 1111111111111111111111111111111111, 1111111111111111111111111111111111111111111111111111111
Offset: 0

Views

Author

Hieronymus Fischer, Jun 26 2007

Keywords

Comments

Interpreted as base-2 numbers the result is A063896.
This sequence differs from A108047 by the leading a(0) = 0. - Jason Kimberley, Dec 15 2012

Examples

			a(3)=11, a(4)=111, so a(5) = a(4)*a(3) = 11111.
		

Crossrefs

Programs

  • Haskell
    import Data.Function (on)
    a131293 n = a131293_list !! n
    a131293_list = 0 : 1 : map read
                   (zipWith ((++) `on` show) a131293_list $ tail a131293_list)
    -- Reinhard Zumkeller, Oct 05 2015
  • Magma
    [(10^Fibonacci(n)-1)/9: n in [0..10]]; // Vincenzo Librandi, Aug 29 2011
    
  • Maple
    a:= n-> parse(cat(0, 1$combinat[fibonacci](n))):
    seq(a(n), n=0..11);  # Alois P. Heinz, Apr 17 2020
  • Mathematica
    Join[{0},FromDigits/@(PadLeft[{},#,1]&/@Fibonacci[Range[10]])] (* Harvey P. Dale, Aug 28 2011 *)

Formula

a(n) = a(n-2)*10^ceiling(log_10(a(n-1))) + a(n-1) for n > 1.
a(n) = (10^Fibonacci(n) - 1)/9.

A108047 Concatenation of the previous pair of numbers, with the first two terms both 1.

Original entry on oeis.org

1, 1, 11, 111, 11111, 11111111, 1111111111111, 111111111111111111111, 1111111111111111111111111111111111, 1111111111111111111111111111111111111111111111111111111, 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
Offset: 1

Views

Author

Parthasarathy Nambi, Jun 01 2005

Keywords

Comments

The Fibonacci numbers, A000045, represented in base 1 (see A000042).

Examples

			The third term is 11 which is the concatenation of the first two terms 1 and 1.
		

Crossrefs

Column b=1 of A214326.
Column k=1 of A214679.

Formula

a(n) = (10^A000045(n)-1)/9.
a(n) = A000042(A000045(n)).

Extensions

Edited by Jason Kimberley, Dec 15 2012

A214326 Square array read by antidiagonals in which T(n,b) gives the n-th Fibonacci number written in base b with n,b >= 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 11, 1, 1, 10, 111, 1, 1, 2, 11, 11111, 1, 1, 2, 10, 101, 11111111, 1, 1, 2, 3, 12, 1000, 1111111111111, 1, 1, 2, 3, 11, 22, 1101, 111111111111111111111, 1, 1, 2, 3, 10, 20, 111, 10101, 1111111111111111111111111111111111, 1, 1, 2, 3, 5, 13, 31, 210, 100010
Offset: 1

Views

Author

Alois P. Heinz, Jul 24 2012

Keywords

Comments

For b > 10, some terms cannot be properly notated using only decimal characters.

Examples

			Square array A(n,b) begins:
              1,    1,   1,  1,  1,  1,  1,  1,  1,  1,  1,  1, ...
              1,    1,   1,  1,  1,  1,  1,  1,  1,  1,  1,  1, ...
             11,   10,   2,  2,  2,  2,  2,  2,  2,  2,  2,  2, ...
            111,   11,  10,  3,  3,  3,  3,  3,  3,  3,  3,  3, ...
          11111,  101,  12, 11, 10,  5,  5,  5,  5,  5,  5,  5, ...
       11111111, 1000,  22, 20, 13, 12, 11, 10,  8,  8,  8,  8, ...
  1111111111111, 1101, 111, 31, 23, 21, 16, 15, 14, 13, 12, 11, ...
		

Crossrefs

Programs

  • Maple
    A:= proc(n, b) local f, l; f:= combinat[fibonacci](n);
          if b=1 then parse(cat(1$f))
        else l:= NULL;
             while f>0 do l:= irem(f, b, 'f'), l od;
             parse(cat(l))
          fi
        end:
    seq(seq(A(n, 1+d-n), n=1..d), d=1..10);
Showing 1-3 of 3 results.