A063896 a(n) = 2^Fibonacci(n) - 1.
0, 1, 1, 3, 7, 31, 255, 8191, 2097151, 17179869183, 36028797018963967, 618970019642690137449562111, 22300745198530623141535718272648361505980415
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..18
- M. Tamba and Y. S. Valaulikar, A nonlinear extension of Fibonacci sequence, Turkish Journal of Analysis and Number Theory, Vol. 4, No. 4, 2016.
Crossrefs
Programs
-
Maple
a:= n-> 2^(<<0|1>, <1|1>>^n)[1,2]-1: seq(a(n), n=0..15); # Alois P. Heinz, Aug 12 2017
-
Mathematica
2^Fibonacci[Range[0,15]]-1 (* Harvey P. Dale, May 20 2014 *) RecurrenceTable[{a[0] == 0, a[1] == 1, a[n] == (a[n - 1] + 1)*(a[n - 2] + 1) - 1}, a[n], {n, 0, 12}] (* Ray Chandler, Jul 30 2015 *)
-
PARI
a(n) = 2^fibonacci(n) - 1 \\ Charles R Greathouse IV, Oct 03 2016
Formula
The solution to the recurrence a(0) = 0; a(1) = 1; a(n) = a(n-1)*a(n-2) + a(n-1) + a(n-2).
a(n) = A000301(n) - 1. - R. J. Mathar, Apr 26 2007
a(n) = a(n-2)*2^ceiling(log_2(a(n-1))) + a(n-1) for n>1. - Hieronymus Fischer, Jun 27 2007
Comments