cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A110145 a(n) = Sum_{k=0..n} C(n,k)^2*mod(k,2).

Original entry on oeis.org

0, 1, 4, 10, 32, 126, 472, 1716, 6400, 24310, 92504, 352716, 1351616, 5200300, 20060016, 77558760, 300533760, 1166803110, 4537591960, 17672631900, 68923172032, 269128937220, 1052049834576, 4116715363800, 16123800489472, 63205303218876, 247959271674352
Offset: 0

Views

Author

Paul Barry, Jul 13 2005

Keywords

Comments

Interleaves A002458 and A037964.
Number of n-element subsets of [2n] having an odd sum. - Alois P. Heinz, Feb 06 2017

Crossrefs

Cf. A159916.

Programs

  • Mathematica
    Table[Sum[Binomial[n,k]^2 Mod[k,2],{k,0,n}],{n,0,30}] (* Harvey P. Dale, Feb 21 2013 *)
    Table[(Binomial[2 n, n] - Binomial[n, n/2] Cos[Pi n/2])/2, {n, 0, 30}] (* Vladimir Reshetnikov, Oct 04 2016 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n, k)^2*(k % 2)); \\ Michel Marcus, Oct 05 2016

Formula

a(n) = Sum_{k=0..n} C(n, k)^2*(1-(-1)^k)/2.
a(n) = C(2n-1, n-1)(1-(-1)^n)/2+(C(2n, n)/2-(-1)^(n/2)*C(n, floor(n/2))/2)(1+(-1)^n)/2.
a(n) = (binomial(2*n, n) - binomial(n, n/2)*cos(Pi*n/2))/2 = n^2 * hypergeom([1/2-n/2, 1/2-n/2, 1-n/2, 1-n/2], [1, 3/2, 3/2], 1). - Vladimir Reshetnikov, Oct 04 2016
a(n) = A159916(2n,n). - Alois P. Heinz, Feb 06 2017

A037976 a(n) = (1/4)*(binomial(4*n, 2*n) - (-1)^n*binomial(2*n, n) + (1-(-1)^n)*binomial(2*n, n)^2).

Original entry on oeis.org

0, 4, 16, 436, 3200, 78004, 675808, 15919320, 150266880, 3450748180, 34461586016, 774842070600, 8061900244736, 178065876017176, 1912172640160960, 41596867935469936, 458156035085377536
Offset: 0

Views

Author

Keywords

References

  • The right-hand side of a binomial coefficient identity in H. W. Gould, Combinatorial Identities, Morgantown, 1972. (See (3.75) on page 31.)

Crossrefs

Programs

  • Magma
    [(1/4)*((2*n+1)*Catalan(2*n) -(-1)^n*(n+1)*Catalan(n) +(1-(-1)^n)*(n+1)^2*Catalan(n)^2): n in [0..30]]; // G. C. Greubel, Jun 22 2022
    
  • Maple
    A037976 := proc(n)
        binomial(4*n,2*n)/4-(-1)^n*binomial(2*n,n)/4+(1-(-1)^n)*binomial(2*n,n)^2/4 ;
    end proc:
    seq(A037976(n),n=0..30) ; # R. J. Mathar, Jul 26 2015
  • Mathematica
    With[{B=Binomial}, Table[(1/4)*(B[4*n,2*n] +B[2*n,n]^2 -2*(-1)^n*B[B[2*n,n] +1, 2]), {n,0,30}]] (* G. C. Greubel, Jun 22 2022 *)
  • SageMath
    b=binomial; [(1/4)*(b(4*n, 2*n) -(-1)^n*b(2*n, n) +(1-(-1)^n)*b(2*n, n)^2) for n in (0..30)] # G. C. Greubel, Jun 22 2022

Formula

From G. C. Greubel, Jun 22 2022: (Start)
a(n) = Sum_{k=0..floor((n-1)/2)} binomial(2*n, 2*k+1)^2.
a(n) = (1/4)*( (2*n+1)*A000108(2*n) - (-1)^n*(n+1)*A000108(n) + (1-(-1)^n)*(n+1)^2*A000108(n)^2 ).
G.f.: (1/4)*(sqrt(1 + sqrt(1-16*x))/(sqrt(2)*sqrt(1-16*x)) - 1/sqrt(1+4*x)) + (1/(2*Pi))*( EllipticK(16*x) - EllipticK(-16*x)). (End)

A098772 a(n) = Sum_{k=0..n} binomial(2*n,2*k)^2.

Original entry on oeis.org

1, 2, 38, 452, 6470, 92252, 1352540, 20056584, 300546630, 4537543340, 68923356788, 1052049129144, 16123803193628, 247959261273752, 3824345320438520, 59132290704871952, 916312070771835462, 14226520736453485260, 221256270142955957252, 3446310324328958045400, 53753604366737011495220
Offset: 0

Views

Author

Vladeta Jovovic, Oct 03 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[2n,2k]^2,{k,0,n}],{n,0,20}] (* Harvey P. Dale, Jan 21 2016 *)
  • Maxima
    makelist((binomial(4*n,2*n)+(-1)^n*binomial(2*n,n))/2,n,0,12); /* Emanuele Munarini, Feb 01 2017 */
    
  • PARI
    a(n) = sum(k=0, n, binomial(2*n, 2*k)^2); \\ Michel Marcus, Feb 01 2017

Formula

a(n) = (binomial(4*n, 2*n)+(-1)^n*binomial(2*n, n))/2.
Recurrence: n*(n-1)*(2*n-1)*(5*n^2-15*n+11)*a(n)-4*(n-1)*(30*n^4-120*n^3+161*n^2-82*n+12)*a(n-1)-4*(4*n-7)*(2*n-3)*(4*n-5)*(5*n^2-5*n+1)*a(n-2) = 0.
a(n) ~ 2^(4*n-3/2)/sqrt(Pi*n). - Vaclav Kotesovec, Aug 02 2017
Showing 1-3 of 3 results.