A038063
Product_{k>=1}1/(1 - x^k)^a(k) = 1 + 2x.
Original entry on oeis.org
2, -3, 2, -3, 6, -11, 18, -30, 56, -105, 186, -335, 630, -1179, 2182, -4080, 7710, -14588, 27594, -52377, 99858, -190743, 364722, -698870, 1342176, -2581425, 4971008, -9586395, 18512790, -35792449, 69273666, -134215680, 260300986
Offset: 1
Cf.
A001037,
A008683,
A038064,
A038065,
A038066,
A038067,
A038068,
A038069,
A038070,
A059966,
A060477,
A065472.
-
a[n_] := DivisorSum[n, (-1)^(#+1) * MoebiusMu[n/#]*2^# &] / n; Array[a, 33] (* Amiram Eldar, May 29 2025 *)
-
{a(n)=polcoeff(sum(k=1,n,moebius(k)/k*log(1+2*x^k+x*O(x^n))),n)} \\ Paul D. Hanna, Oct 13 2010
A038070
Product_{k>=1} (1+x^k)^a(k) = 1 + 5x.
Original entry on oeis.org
5, -10, 40, -160, 624, -2580, 11160, -48910, 217000, -976248, 4438920, -20346280, 93900240, -435959820, 2034504992, -9536767660, 44878791360, -211927516500, 1003867701480, -4768372069968, 22706531339280, -108372079190340, 518301258916440, -2483526875798780
Offset: 1
A038064
Product_{k>=1} 1/(1 - x^k)^a(k) = 1 + 3x.
Original entry on oeis.org
3, -6, 8, -18, 48, -124, 312, -810, 2184, -5928, 16104, -44220, 122640, -341796, 956576, -2690010, 7596480, -21524412, 61171656, -174336264, 498111952, -1426419852, 4093181688, -11767874940, 33891544368, -97764131640
Offset: 1
-
{a(n)=polcoeff(sum(k=1,n,moebius(k)/k*log(1+3*x^k+x*O(x^n))),n)} \\ Paul D. Hanna, Oct 13 2010
A038065
Product_{k>=1} 1/(1 - x^k)^a(k) = 1 + 4x.
Original entry on oeis.org
4, -10, 20, -60, 204, -690, 2340, -8160, 29120, -104958, 381300, -1397740, 5162220, -19175130, 71582716, -268431360, 1010580540, -3817763040, 14467258260, -54975528948, 209430785460, -799645010850, 3059510616420
Offset: 1
A343467
a(n) = -(1/n) * Sum_{d|n} phi(n/d) * (-5)^d.
Original entry on oeis.org
5, -10, 45, -160, 629, -2590, 11165, -48910, 217045, -976258, 4438925, -20346440, 93900245, -435959830, 2034505661, -9536767660, 44878791365, -211927519090, 1003867701485, -4768372070128, 22706531350485, -108372079190350, 518301258916445, -2483526875847690, 11920928955078629
Offset: 1
-
Table[-(1/n) Sum[EulerPhi[n/d] (-5)^d, {d, Divisors[n]}], {n, 1, 25}]
nmax = 25; CoefficientList[Series[Sum[EulerPhi[k] Log[1 + 5 x^k]/k, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
A383011
Square array A(n,k), n >= 1, k >= 1, read by antidiagonals downwards, where A(n,k) = -(1/n) * Sum_{d|n} mu(n/d) * (-k)^d.
Original entry on oeis.org
1, 2, -1, 3, -3, 0, 4, -6, 2, 0, 5, -10, 8, -3, 0, 6, -15, 20, -18, 6, 0, 7, -21, 40, -60, 48, -11, 0, 8, -28, 70, -150, 204, -124, 18, 0, 9, -36, 112, -315, 624, -690, 312, -30, 0, 10, -45, 168, -588, 1554, -2620, 2340, -810, 56, 0, 11, -55, 240, -1008, 3360, -7805, 11160, -8160, 2184, -105, 0
Offset: 1
Square array begins:
1, 2, 3, 4, 5, 6, 7, ...
-1, -3, -6, -10, -15, -21, -28, ...
0, 2, 8, 20, 40, 70, 112, ...
0, -3, -18, -60, -150, -315, -588, ...
0, 6, 48, 204, 624, 1554, 3360, ...
0, -11, -124, -690, -2620, -7805, -19656, ...
0, 18, 312, 2340, 11160, 39990, 117648, ...
Showing 1-6 of 6 results.
Comments