cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A038063 Product_{k>=1}1/(1 - x^k)^a(k) = 1 + 2x.

Original entry on oeis.org

2, -3, 2, -3, 6, -11, 18, -30, 56, -105, 186, -335, 630, -1179, 2182, -4080, 7710, -14588, 27594, -52377, 99858, -190743, 364722, -698870, 1342176, -2581425, 4971008, -9586395, 18512790, -35792449, 69273666, -134215680, 260300986
Offset: 1

Views

Author

Christian G. Bower, Jan 04 1999

Keywords

Comments

Apart from initial terms, exponents in expansion of A065472 as a product zeta(n)^(-a(n)).

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, (-1)^(#+1) * MoebiusMu[n/#]*2^# &] / n; Array[a, 33] (* Amiram Eldar, May 29 2025 *)
  • PARI
    {a(n)=polcoeff(sum(k=1,n,moebius(k)/k*log(1+2*x^k+x*O(x^n))),n)} \\ Paul D. Hanna, Oct 13 2010

Formula

a(n) = (1/n) * Sum_{d divides n} (-1)^(d+1)*moebius(n/d)*2^d. - Vladeta Jovovic, Sep 06 2002
G.f.: Sum_{n>=1} moebius(n)*log(1 + 2*x^n)/n, where moebius(n) = A008683(n). - Paul D. Hanna, Oct 13 2010
For n == 0, 1, 3 (mod 4), a(n) = (-1)^(n+1)*A001037(n), which for n>1 also equals (-1)^(n+1)*A059966(n) = (-1)^(n+1)*A060477(n).
For n == 2 (mod 4), a(n) = -(A001037(n) + A001037(n/2)). - George Beck and Max Alekseyev, May 23 2016
a(n) ~ -(-1)^n * 2^n / n. - Vaclav Kotesovec, Jun 12 2018

A038070 Product_{k>=1} (1+x^k)^a(k) = 1 + 5x.

Original entry on oeis.org

5, -10, 40, -160, 624, -2580, 11160, -48910, 217000, -976248, 4438920, -20346280, 93900240, -435959820, 2034504992, -9536767660, 44878791360, -211927516500, 1003867701480, -4768372069968, 22706531339280, -108372079190340, 518301258916440, -2483526875798780
Offset: 1

Views

Author

Christian G. Bower, Jan 04 1999

Keywords

Crossrefs

Formula

Dirichlet convolution of A038066 with characteristic function of powers of 2.
a(n) = (1/n) * (-(-5)^n + Sum_{dSeiichi Manyama, Jun 23 2018

A038064 Product_{k>=1} 1/(1 - x^k)^a(k) = 1 + 3x.

Original entry on oeis.org

3, -6, 8, -18, 48, -124, 312, -810, 2184, -5928, 16104, -44220, 122640, -341796, 956576, -2690010, 7596480, -21524412, 61171656, -174336264, 498111952, -1426419852, 4093181688, -11767874940, 33891544368, -97764131640
Offset: 1

Views

Author

Christian G. Bower, Jan 04 1999

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(sum(k=1,n,moebius(k)/k*log(1+3*x^k+x*O(x^n))),n)} \\ Paul D. Hanna, Oct 13 2010

Formula

G.f.: Sum_{n>=1} moebius(n)*log(1 + 3*x^n)/n, where moebius(n)=A008683(n). - Paul D. Hanna, Oct 13 2010
a(n) = -(1/n) * Sum_{d|n} mu(n/d) * (-3)^d. - Seiichi Manyama, Apr 12 2025

A038065 Product_{k>=1} 1/(1 - x^k)^a(k) = 1 + 4x.

Original entry on oeis.org

4, -10, 20, -60, 204, -690, 2340, -8160, 29120, -104958, 381300, -1397740, 5162220, -19175130, 71582716, -268431360, 1010580540, -3817763040, 14467258260, -54975528948, 209430785460, -799645010850, 3059510616420
Offset: 1

Views

Author

Christian G. Bower, Jan 04 1999

Keywords

Crossrefs

Programs

  • PARI
    x='x+O('x^24); Vec(sum(k=1, 24, moebius(k)*log(1 + 4*x^k)/k)) \\ Indranil Ghosh, May 24 2017

Formula

G.f.: Sum_{k>=1} mu(k)*log(1 + 4*x^k)/k. - Ilya Gutkovskiy, May 23 2017
a(n) ~ -(-1)^n * 4^n / n. - Vaclav Kotesovec, Jun 12 2018
a(n) = -(1/n) * Sum_{d|n} mu(n/d) * (-4)^d. - Seiichi Manyama, Apr 12 2025

A343467 a(n) = -(1/n) * Sum_{d|n} phi(n/d) * (-5)^d.

Original entry on oeis.org

5, -10, 45, -160, 629, -2590, 11165, -48910, 217045, -976258, 4438925, -20346440, 93900245, -435959830, 2034505661, -9536767660, 44878791365, -211927519090, 1003867701485, -4768372070128, 22706531350485, -108372079190350, 518301258916445, -2483526875847690, 11920928955078629
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 16 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[-(1/n) Sum[EulerPhi[n/d] (-5)^d, {d, Divisors[n]}], {n, 1, 25}]
    nmax = 25; CoefficientList[Series[Sum[EulerPhi[k] Log[1 + 5 x^k]/k, {k, 1, nmax}], {x, 0, nmax}], x] // Rest

Formula

G.f.: Sum_{k>=1} phi(k) * log(1 + 5*x^k) / k.
a(n) = -(1/n) * Sum_{k=1..n} (-5)^gcd(n,k).
Product_{n>=1} 1 / (1 - x^n)^a(n) = g.f. for A261569.

A383011 Square array A(n,k), n >= 1, k >= 1, read by antidiagonals downwards, where A(n,k) = -(1/n) * Sum_{d|n} mu(n/d) * (-k)^d.

Original entry on oeis.org

1, 2, -1, 3, -3, 0, 4, -6, 2, 0, 5, -10, 8, -3, 0, 6, -15, 20, -18, 6, 0, 7, -21, 40, -60, 48, -11, 0, 8, -28, 70, -150, 204, -124, 18, 0, 9, -36, 112, -315, 624, -690, 312, -30, 0, 10, -45, 168, -588, 1554, -2620, 2340, -810, 56, 0, 11, -55, 240, -1008, 3360, -7805, 11160, -8160, 2184, -105, 0
Offset: 1

Views

Author

Seiichi Manyama, Apr 12 2025

Keywords

Examples

			Square array begins:
   1,   2,    3,    4,     5,     6,      7, ...
  -1,  -3,   -6,  -10,   -15,   -21,    -28, ...
   0,   2,    8,   20,    40,    70,    112, ...
   0,  -3,  -18,  -60,  -150,  -315,   -588, ...
   0,   6,   48,  204,   624,  1554,   3360, ...
   0, -11, -124, -690, -2620, -7805, -19656, ...
   0,  18,  312, 2340, 11160, 39990, 117648, ...
		

Crossrefs

Columns k=1..5 give A154955, A038063, A038064, A038065, A038066.
Main diagonal gives A383012.

Programs

  • PARI
    a(n, k) = -sumdiv(n, d, moebius(n/d)*(-k)^d)/n;

Formula

G.f. of column k: Sum_{j>=1} mu(j) * log(1 + k*x^j) / j.
Product_{n>=1} 1/(1 - x^n)^A(n,k) = 1 + k*x.
Showing 1-6 of 6 results.