A061016 Duplicate of A038366.
10, 19, 20, 29, 30, 39, 40, 42, 49, 50, 59, 60, 69, 70, 79, 80, 89, 90, 99, 100, 102, 108
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
a(14) = 1+4 + 1*4 = 9.
[0] cat [&+Intseq(n)+&*Intseq(n): n in [1..80]];// Vincenzo Librandi, Jan 03 2020
read("transforms") : A061762 := proc(n) digsum(n)+A007954(n) ; end proc: # R. J. Mathar, Aug 13 2012
Table[Plus @@ IntegerDigits[n] + Times @@ IntegerDigits[n], {n, 0, 75}] (* Jayanta Basu, Apr 05 2013 *)
a(n) = if (n==0, 0, my(d=digits(n)); vecsum(d) + vecprod(d)); \\ Michel Marcus, Oct 29 2019, Jan 03 2020
from operator import mul from functools import reduce def A061762(n): a = [int(d) for d in str(n)] return sum(a)+reduce(mul,a) # Chai Wah Wu, Aug 14 2017
42 is a term as 4+2 + 2*4 = 14 and 42 = 14*3.
Select[Range[3400], (y = Times @@ (x = IntegerDigits[#])) != 0 && Divisible[#, Plus @@ x + y] &] (* Jayanta Basu, Jul 14 2013 *)
isok(k) = my(d=digits(k)); vecmin(d) && ((k % (vecprod(d) + vecsum(d))) == 0);
For k = 625, f(k) = 6+2+5 + 6*2+2*5+6*5 + 6*2*5 = 13 + 52 + 60 = 125 and 625/125 = 5, hence, 625 is a term, and 5 is the solution to part (i) of the BMO problem.
for i from 1 to 9 do for j from 0 to 9 do for k from 0 to 9 do n := 100*i + 10*j + k ; m := i + j + k + i*j + j*k + k*i + i*j*k ; if n/m = floor(n/m) then print(n,m,n/m) ; end if ; end do ; end do ; end do ;
Select[Range[100, 999], ({h,d,u} = IntegerDigits@ #; IntegerQ[# / (d + u + d u + (1 + d) h (1 + u))]) &] (* Giovanni Resta, Oct 29 2019 *)
For k = 7, f_1(7) = 7, and 7/7 = 1, hence 7 is a term. For k = 42, f_2(4,2) = 4+2 + 4*2 = 14 and 42/14 = 3, hence 42 is a term. For k = 572, f_3(5,7,2) = 5+7+2 + 5*7+7*2+2*5 + 5*7*2 = 14 + 59 + 70 = 143 and 572/143 = 4, hence 572 is a term. For k = 3225, f_4(3,2,2,5) = 3+2+2+5 + 3*2+3*2+3*5+2*2+2*5+2*5 + 3*2*2+3*2*5+3*2*5+2*2*5 + 3*2*2*5 = 215 and 3225/215 = 15, hence 3225 is a term.
sympol(X, n)=my(s=0); forvec(i=vector(n, j, [1, #X]), s+=prod(k=1, n, X[i[k]]), 2); s ; f(n) = my(d=digits(n)); sum(k=1, #d, sympol(d, k)); \\ A061486 isok(m) = (m % f(m)) == 0; \\ Michel Marcus, Apr 06 2021
For A343131(7) = 7, A061486(7) = 7 and a(7) = 7/7 = 1. For A343131(17) = 42, A061486(42) = 4+2 + 4*2 = 14 and a(17) = 42/14 = 3. For A343131(58) = 573, A061486(573) = 5+7+3 + 5*7+7*3+3*5 + 5*7*3 = 191 and a(58) = 573/191 = 3.
sympol(X, n) = my(s=0); forvec(i=vector(n, j, [1, #X]), s+=prod(k=1, n, X[i[k]]), 2); s ; f(n) = my(d=digits(n)); sum(k=1, #d, sympol(d, k)); lista(nn) = {for (n=1, nn, my(q = n/f(n)); if (denominator(q) == 1, print1(q, ", ")););} \\ Michel Marcus, Apr 08 2021
Comments