cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A062045 Positive numbers whose product of digits is 12 times their sum.

Original entry on oeis.org

666, 1479, 1497, 1568, 1586, 1658, 1685, 1749, 1794, 1856, 1865, 1947, 1974, 2349, 2394, 2439, 2446, 2464, 2493, 2644, 2934, 2943, 3249, 3294, 3345, 3354, 3429, 3435, 3453, 3492, 3534, 3543, 3924, 3942, 4179, 4197, 4239, 4246, 4264, 4293, 4329, 4335, 4353, 4392
Offset: 1

Views

Author

Amarnath Murthy, Jun 28 2001

Keywords

Examples

			2349 belongs to the sequence as (2*3*4*9)/(2+3+4+9) = 216/18 = 12.
		

Crossrefs

Programs

  • Mathematica
    okQ[n_]:=Module[{idn=IntegerDigits[n]},Times@@idn/Total[idn]==12]
    Select[Range[10000],okQ] (* Harvey P. Dale, Nov 25 2010 *)
  • PARI
    isok(n) = my(d=digits(n)); vecprod(d)==12*vecsum(d) \\ Mohammed Yaseen, Sep 12 2022
    
  • Python
    from math import prod
    def ok(n): d = list(map(int, str(n))); return prod(d) == 12*sum(d)
    print([k for k in range(1, 4400) if ok(k)]) # Michael S. Branicky, Sep 12 2022

Extensions

Corrected and extended by Larry Reeves (larryr(AT)acm.org), Jul 06 2001
More terms from Harvey P. Dale, Nov 25 2010
Offset corrected by Mohammed Yaseen, Sep 12 2022

A061013 Numbers k such that (product of digits of k) is divisible by (sum of digits of k), where 0's are not permitted.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 22, 36, 44, 63, 66, 88, 123, 132, 138, 145, 154, 159, 167, 176, 183, 189, 195, 198, 213, 224, 231, 235, 242, 246, 253, 257, 264, 268, 275, 279, 286, 297, 312, 318, 321, 325, 333, 345, 347, 352, 354, 357, 369, 374, 375, 381, 396, 415
Offset: 1

Views

Author

Heiner Muller-Merbach (hmm(AT)sozwi.uni-kl.de), Jun 06 2001

Keywords

Comments

Called "perfect years". 1998 and 2114 are the nearest past and future examples.

Examples

			1998 is perfect since 1*9*9*8/(1+9+9+8) = 24.
		

References

  • H. Herles, Reformstau, Gefuehlsstau, Verkehrsstau. Generalanzeiger, 12/31/1997, p. V.
  • H. Muller-Merbach and L. Logelix, Perfekte Jahre, Technologie und Management, Vol. 42, 1993, No. 1, p. 47 and No. 2, p. 95.

Crossrefs

See A038367 for case where 0 digits are allowed. Cf. A055931.
Cf. A274124.

Programs

  • Maple
    for n from 1 to 3000 do a := convert(n,base,10):s := add(a[i],i=1..nops(a)):p := mul(a[i],i=1..nops(a)): if p<>0 and p mod s=0 then printf(`%d,`,n):fi:od:
  • Mathematica
    Select[Range[415], FreeQ[x = IntegerDigits[#], 0] && Divisible[Times @@ x, Plus @@ x] &] (* Jayanta Basu, Jul 13 2013 *)
  • PARI
    is(n) = my(d = digits(n)); vd = vecprod(d); vd != 0 && vd % vecsum(d) == 0 \\ David A. Corneth, Mar 15 2021
    
  • Python
    from math import prod
    def ok(n):
        d = list(map(int, str(n)))
        pod, sod = prod(d), sum(d)
        return pod and pod%sod == 0
    print([k for k in range(416) if ok(k)]) # Michael S. Branicky, Mar 28 2022

Extensions

More terms from Larry Reeves (larryr(AT)acm.org) and Vladeta Jovovic, Jun 07 2001

A274124 Numbers n such that (product of digits of n) is divisible by (sum of digits of n) and digits of n are in nondecreasing order.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 22, 36, 44, 66, 88, 123, 138, 145, 159, 167, 189, 224, 235, 246, 257, 268, 279, 333, 345, 347, 357, 369, 448, 456, 459, 466, 578, 579, 666, 678, 789, 999, 1124, 1146, 1168, 1225, 1233, 1236, 1247, 1258, 1269, 1344, 1348, 1356, 1368, 1447
Offset: 1

Views

Author

David A. Corneth, Jun 10 2016

Keywords

Comments

Every number with a digit 0 is in A038367. Every permutation of every element of this is in A038367. These elements describe A038367 completely.
Intersection of A038367 and A009994.

Crossrefs

Programs

  • PARI
    is(n) = my(v=vecsort(digits(n))); v==digits(n) && prod(i=1,#v,v[i]) % vecsum(v)==0

A055931 Product of the digits of n divides the sum of the digits of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 111, 112, 121, 123, 132, 211, 213, 231, 312, 321, 1111, 1113, 1124, 1131, 1142, 1214, 1241, 1311, 1412, 1421, 2114, 2141, 2411, 3111, 4112, 4121, 4211, 11111, 11112, 11114, 11121, 11125, 11133, 11141, 11152, 11211, 11215
Offset: 1

Views

Author

Robert G. Wilson v, Jul 17 2000

Keywords

Crossrefs

Cf. A038367.

Programs

  • Mathematica
    Do[If[Mod[Apply[Plus, IntegerDigits[n]], Apply[Times, IntegerDigits[n]]]==0, Print[n]], {n, 1, 100000}]
    pdsQ[n_]:=Module[{idn=IntegerDigits[n]},!MemberQ[idn,0] && Divisible[ Total[idn],Times@@idn]]; Select[Range[12000],pdsQ] (* Harvey P. Dale, Dec 07 2011 *)

A138566 Numbers n whose digits satisfy the following Diophantine equation: P = (X1* ... *Xr)/(X1+ ... +Xr), where P = prime number, Xi = digits of n.

Original entry on oeis.org

36, 44, 63, 66, 138, 145, 154, 159, 167, 176, 183, 195, 224, 235, 242, 253, 257, 275, 279, 297, 318, 325, 333, 345, 352, 354, 357, 375, 381, 415, 422, 435, 451, 453, 514, 519, 523, 527, 532, 534, 537, 541, 543, 572, 573, 591, 617, 671, 716, 725, 729, 735
Offset: 1

Views

Author

Ctibor O. Zizka, May 12 2008

Keywords

Examples

			n = 761, we have (7*6*1)/(7+6+1) = 3; a(56)= 761.
n = 792, we have (7*9*2)/(7+9+2) = 7; a(57)= 792.
n = 813, we have (8*1*3)/(8+1+3) = 2; a(58)= 813.
		

Crossrefs

Subsequence of A038367.
Cf. A137923.

Programs

  • Mathematica
    Block[{i = k, r = {}}, r = Table[p = IntegerDigits@i; If[PrimeQ[Times @@ p/Total@p], k, Nothing], {k, 735}];r] (* Mikk Heidemaa, May 26 2024 *)

A240520 Numbers that set a new integer record for the ratio between the product and the sum of their digits.

Original entry on oeis.org

1, 36, 66, 88, 257, 268, 279, 369, 459, 578, 579, 678, 789, 999, 2589, 2688, 2799, 3699, 3789, 4599, 4689, 4789, 5788, 5889, 7889, 8888, 18999, 25889, 26789, 26888, 27788, 28899, 37899, 38889, 45999, 46899, 47799, 47889, 55899, 56889, 57789, 58999, 78999, 257899
Offset: 1

Views

Author

Paolo P. Lava, Apr 07 2014

Keywords

Examples

			For n = 2 we have 2 / 2 = 1.
For n = 36 we have 18 / 9 = 2.
For n = 66 we have 36 / 12 = 3.
For n = 88 we have 64 / 16 = 4.
Etc.
		

Crossrefs

Programs

  • Maple
    S:=proc(s) local j,w; w:=convert(s,base,10); sum(w[j],j=1..nops(w)); end:
    U:=proc(s) local j,w; w:=convert(s,base,10); mul(w[j],j=1..nops(w)); end:
    P:=proc(q) local a,n; a:=0;
    for n from 2 to q do if type(U(n)/S(n),integer) then if U(n)/S(n)>a then
    a:=U(n)/S(n); print(n); fi; fi; od; end: P(10^6);

A371631 Primes whose product of nonzero digits divided by the sum of its digits is also prime.

Original entry on oeis.org

167, 257, 523, 541, 617, 761, 1447, 1607, 1861, 2053, 2251, 2503, 2521, 2851, 4051, 5023, 5281, 5821, 6701, 8161, 8521, 10067, 10607, 10861, 11273, 11471, 12713, 13127, 13217, 13721, 14407, 16007, 17123, 17231, 17321, 18061, 20507, 20521, 21247, 21317, 21713, 22051
Offset: 1

Views

Author

Mikk Heidemaa, May 24 2024

Keywords

Comments

No term N can have a "9" digit. [Proof: The sum of the digits of N is not a multiple of 3, but the numerator would be a multiple of 9, and so the number would be a multiple of 9, so not a prime.]

Examples

			167 (prime) is a term because 1*6*7/(1+6+7)=42/14=3 (prime).
		

Crossrefs

Subsequence of A038367.
Equals prime terms of A138566.

Programs

  • Mathematica
    pQ[n_] := Block[{idp = DeleteCases[IntegerDigits[n], 0]}, PrimeQ[Times @@ idp/Total@ idp]]; Cases[Prime@ Range@ PrimePi[10^5], _?pQ]
    Select[Prime[Range[2500]],PrimeQ[Times@@(IntegerDigits[#]/.(0->1))/Total[ IntegerDigits[ #]]]&] (* Harvey P. Dale, Sep 24 2024 *)

A381631 Numbers k such that the product of k and its digits is divisible by the sum of its digits.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 22, 24, 26, 27, 30, 36, 40, 42, 44, 45, 48, 50, 54, 60, 62, 63, 66, 70, 72, 80, 81, 84, 88, 90, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 114, 116, 117, 120, 123, 126, 130, 132, 133, 134, 135, 138, 140
Offset: 1

Views

Author

Jakub Buczak, Mar 02 2025

Keywords

Comments

Positive integers with the digit 0 (see A011540) are terms, since the product of it and its digits is A098736(k) = 0 which is divisible by any sum of digits.
Terms with a 0 digit form various runs of consecutive terms, such as from 100...00 through to 111...10.
Terms without a 0 digit can form runs of 9 terms: see A381697.
A prime > 7 is never divisible by its sum of digits (because the sum is smaller than the prime) so that primes > 7 occur in this sequence only when their product of digits is divisible by sum of digits (the primes in A038367).

Examples

			36 is a term because 36*3*6 is divisible by 3+6.
140 is a term because 140*1*4*0 equals 0, which is trivially divisible by 1+4+0.
		

Crossrefs

Programs

  • Mathematica
    q[k_] := Module[{d = IntegerDigits[k]}, Divisible[k * Times @@ d, Plus @@ d]]; Select[Range[140], q] (* Amiram Eldar, Mar 03 2025 *)
  • PARI
    isok(k) = my(d=digits(k)); !((k*vecprod(d)) % vecsum(d)); \\ Michel Marcus, Mar 03 2025

A319507 Smallest number of multiplicative-additive divisors persistence n.

Original entry on oeis.org

1, 2, 36, 3489, 24778899, 566677899999, 47777778999999999999
Offset: 0

Views

Author

Pieter Post, Sep 21 2018

Keywords

Comments

To compute the "multiplicative-additive divisors persistence" of a number, we proceed as follows. Form the product of the digits of the number (A007954) divided by the sum of the digits (A007953). Repeat this process until you reach 0 or 1. If we reach a non-integer, we write 0. The "multiplicative-additive divisors persistence" is the number of steps to reach 0 or 1.
For instance: the multiplicative-additive divisors persistence of 874 is 1, because 874 -> 8 * 7 * 4 / (8 + 7 + 4) = 224/19. This is not an integer, so the process stops after one step.

Examples

			The multiplicative additive divisors persistence of 24778899 is 4: 24778899 -> (2032128/54=) 37632 -> (756/21=) 36 -> (18/9=) 2 -> (2/2=) 1.
		

Crossrefs

Extensions

Offset set to 0. - R. J. Mathar, Jun 30 2020
Showing 1-9 of 9 results.