cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A043537 Number of distinct base-10 digits of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2
Offset: 1

Views

Author

Keywords

Comments

a(A000079(A130694(n))) = 10. - Reinhard Zumkeller, Jul 29 2007
a(A000290(A016070(n))) = 2. - Reinhard Zumkeller, Aug 05 2010
a(n) = 10 for almost all n. - Charles R Greathouse IV, Oct 02 2013

Crossrefs

Programs

A007809 Smallest prime with n distinct digits.

Original entry on oeis.org

2, 13, 103, 1039, 10243, 102359, 1023467, 10234589, 102345689
Offset: 1

Views

Author

N.B. Backhouse (sx52(AT)liverpool.ac.uk)

Keywords

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 1039, p.126, Ellipses, Paris 2008. [From Lekraj Beedassy, Oct 12 2008]

Crossrefs

Programs

  • Mathematica
    Table[Module[{k=NextPrime[10^n]},While[Max[DigitCount[k]]>1,k=NextPrime[k]];k],{n,0,8}] (* Harvey P. Dale, May 27 2025 *)
  • PARI
    A007809(n,p=A038378(n))={until(isprime(p),while(#Set(digits(p++))M. F. Hasler, May 04 2017
    
  • Python
    from sympy import nextprime
    def a(n):
      p = nextprime(10**(n-1))
      while len(set(str(p))) < n: p = nextprime(p)
      return p
    for n in range(1, 10):
      print(a(n), end=", ") # Michael S. Branicky, Feb 13 2021

Extensions

Corrected by Jud McCranie, Jan 03 2001

A101599 a(n) = binomial coefficient C(m,k) with minimal (m,k) and exactly n distinct digits in decimal representation.

Original entry on oeis.org

1, 10, 126, 1287, 12870, 125970, 1352078, 84672315, 137846528820, 6499270398159
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 08 2004

Keywords

Examples

			A101598(49,17) = A043537(6499270398159) = 10.
		

Crossrefs

Cf. A038378.

A081716 Smallest number x such that phi(x)=A000010(x) has exactly n different decimal digits.

Original entry on oeis.org

2, 11, 103, 1033, 10247, 102359, 1023487, 10234759, 102345979, 1023475969
Offset: 1

Views

Author

Labos Elemer, Apr 04 2003

Keywords

Examples

			phi applied to the sequence gives: 1, 10, 102, 1032, 10246, 102358, 1023486, 10234758, 102345978, ...
		

Crossrefs

Programs

  • Mathematica
    f[x_] := Length[Union[IntegerDigits[x]]]
    t=Table[0, {10}];
    Do[s=f[n]; If[PrimeQ[n]&&s<11&&t[[s]]==0,
    t[[s]]=n], {n, 1, 10000000000}];

Extensions

a(10) from Donovan Johnson, Feb 05 2010

A356726 Integers which have in Roman numerals more distinct symbols than any smaller number.

Original entry on oeis.org

1, 4, 14, 44, 144, 444, 1444
Offset: 1

Views

Author

Alain Cousquer, Aug 24 2022

Keywords

Comments

Indices of record highs in A057226.
Smallest number whose Roman notation has exactly n distinct symbols.
The sequence is finite because 1444 is the smallest number using the symbols I,V,X,L,C,D,M.

Examples

			For n = 3, a(3) = 14 because 14 = XIV which is the smallest number with 3 symbols in Roman notation.
		

Crossrefs

Programs

  • Mathematica
    kmax=1500; a={}; n=1; For[k=1, k<=kmax, k++, If[Length[DeleteDuplicates[Characters[RomanNumeral[k]]]] == n, AppendTo[a, k]; n++; k=1]]; a (* Stefano Spezia, Aug 26 2022 *)
Showing 1-5 of 5 results.