cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038500 Highest power of 3 dividing n.

Original entry on oeis.org

1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 27, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 27, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 81
Offset: 1

Views

Author

Keywords

Comments

To construct the sequence: start with 1 and concatenate twice: 1,1,1 then tripling the last term gives: 1,1,3. Concatenating those 3 terms twice gives: 1,1,3,1,1,3,1,1,3, triple the last term -> 1,1,3,1,1,3,1,1,9. Concatenating those 9 terms twice gives: 1,1,3,1,1,3,1,1,9,1,1,3,1,1,3,1,1,9,1,1,3,1,1,3,1,1,9, triple the last term -> 1,1,3,1,1,3,1,1,9,1,1,3,1,1,3,1,1,9,1,1,3,1,1,3,1,1,27 etc. - Benoit Cloitre, Dec 17 2002
Also 3-adic value of 1/n, n >= 1. See the Mahler reference, definition on p. 7. This is a non-archimedean valuation. See Mahler, p. 10. Sometimes also called 3-adic absolute value. - Wolfdieter Lang, Jun 28 2014

References

  • Kurt Mahler, p-adic numbers and their functions, second ed., Cambridge University Press, 1981.

Crossrefs

Programs

  • Haskell
    a038500 = f 1 where
       f y x = if m == 0 then f (y * 3) x' else y  where (x', m) = divMod x 3
    -- Reinhard Zumkeller, Jul 06 2014
    
  • Magma
    [3^Valuation(n,3): n in [1..100]]; // Vincenzo Librandi, Dec 29 2015
  • Maple
    A038500 := n -> 3^padic[ordp](n,3): # Peter Luschny, Nov 26 2010
  • Mathematica
    Flatten[{1,1,#}&/@(3^IntegerExponent[#,3]&/@(3*Range[40]))] (* or *) hp3[n_]:=If[Divisible[n,3],3^IntegerExponent[n,3],1]; Array[hp3,90] (* Harvey P. Dale, Mar 24 2012 *)
    Table[3^IntegerExponent[n, 3], {n, 100}] (* Vincenzo Librandi, Dec 29 2015 *)
  • PARI
    {a(n) = if( n<1, 0, 3^valuation(n, 3))};
    

Formula

Multiplicative with a(p^e) = p^e if p = 3, 1 otherwise. - Mitch Harris, Apr 19 2005
a(n) = n / A038502(n). Dirichlet g.f. zeta(s)*(3^s-1)/(3^s-3). - R. J. Mathar, Jul 12 2012
From Peter Bala, Feb 21 2019: (Start)
a(n) = gcd(n,3^n).
O.g.f.: x/(1 - x) + 2*Sum_{n >= 1} 3^(n-1)*x^(3^n)/ (1 - x^(3^n)). (End)
Sum_{k=1..n} a(k) ~ (2/(3*log(3)))*n*log(n) + (2/3 + 2*(gamma-1)/(3*log(3)))*n, where gamma is Euler's constant (A001620). - Amiram Eldar, Nov 15 2022