A038500 Highest power of 3 dividing n.
1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 27, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 27, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 81
Offset: 1
References
- Kurt Mahler, p-adic numbers and their functions, second ed., Cambridge University Press, 1981.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Tyler Ball, Tom Edgar, and Daniel Juda, Dominance Orders, Generalized Binomial Coefficients, and Kummer's Theorem, Mathematics Magazine, Vol. 87, No. 2, April 2014, pp. 135-143.
- Zoran Sunic, Tree morphisms, transducers and integer sequences, arXiv:math/0612080 [math.CO], 2006.
Programs
-
Haskell
a038500 = f 1 where f y x = if m == 0 then f (y * 3) x' else y where (x', m) = divMod x 3 -- Reinhard Zumkeller, Jul 06 2014
-
Magma
[3^Valuation(n,3): n in [1..100]]; // Vincenzo Librandi, Dec 29 2015
-
Maple
A038500 := n -> 3^padic[ordp](n,3): # Peter Luschny, Nov 26 2010
-
Mathematica
Flatten[{1,1,#}&/@(3^IntegerExponent[#,3]&/@(3*Range[40]))] (* or *) hp3[n_]:=If[Divisible[n,3],3^IntegerExponent[n,3],1]; Array[hp3,90] (* Harvey P. Dale, Mar 24 2012 *) Table[3^IntegerExponent[n, 3], {n, 100}] (* Vincenzo Librandi, Dec 29 2015 *)
-
PARI
{a(n) = if( n<1, 0, 3^valuation(n, 3))};
Formula
Multiplicative with a(p^e) = p^e if p = 3, 1 otherwise. - Mitch Harris, Apr 19 2005
a(n) = n / A038502(n). Dirichlet g.f. zeta(s)*(3^s-1)/(3^s-3). - R. J. Mathar, Jul 12 2012
From Peter Bala, Feb 21 2019: (Start)
a(n) = gcd(n,3^n).
O.g.f.: x/(1 - x) + 2*Sum_{n >= 1} 3^(n-1)*x^(3^n)/ (1 - x^(3^n)). (End)
Sum_{k=1..n} a(k) ~ (2/(3*log(3)))*n*log(n) + (2/3 + 2*(gamma-1)/(3*log(3)))*n, where gamma is Euler's constant (A001620). - Amiram Eldar, Nov 15 2022
Comments