A038550 Products of an odd prime and a power of two (sorted).
3, 5, 6, 7, 10, 11, 12, 13, 14, 17, 19, 20, 22, 23, 24, 26, 28, 29, 31, 34, 37, 38, 40, 41, 43, 44, 46, 47, 48, 52, 53, 56, 58, 59, 61, 62, 67, 68, 71, 73, 74, 76, 79, 80, 82, 83, 86, 88, 89, 92, 94, 96, 97, 101, 103, 104, 106, 107, 109, 112, 113, 116, 118, 122, 124, 127
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- T. Verhoeff, Rectangular and Trapezoidal Arrangements, J. Integer Sequences, Vol. 2, 1999, #99.1.6.
Crossrefs
Programs
-
Haskell
a038550 n = a038550_list !! (n-1) a038550_list = filter ((== 2) . a001227) [1..] -- Reinhard Zumkeller, May 01 2012
-
Mathematica
Select[Range[127],DivisorSigma[0,Max[Select[Divisors[#],OddQ]]]-1==1&] (* Jayanta Basu, Apr 30 2013 *) fQ[n_] := Module[{p, e}, {p, e} = Transpose[FactorInteger[n]]; (Length[p] == 2 && p[[1]] == 2 && e[[2]] == 1) || (Length[p] == 1 && p[[1]] > 2 && e[[1]] == 1)]; Select[Range[2, 127], fQ] (* T. D. Noe, Apr 30 2013 *) upto=150;Module[{pmax=PrimePi[upto],tmax=Ceiling[Log[2,upto]]}, Select[ Sort[ Flatten[ Outer[ Times, Prime[ Range[ 2,pmax]], 2^Range[0,tmax]]]],#<=upto&]] (* Harvey P. Dale, Oct 18 2013 *) Flatten@Position[PrimeQ[BitShiftRight[#, IntegerExponent[#, 2]]&/@Range[#]], True]&@127 (* Federico Provvedi, Dec 14 2021 *)
-
PARI
is(n)=isprime(n>>valuation(n,2)) \\ Charles R Greathouse IV, Apr 30 2013
Formula
A001227(a(n)) = 2. - Reinhard Zumkeller, May 01 2012
a(n) ~ 0.5 n log n. - Charles R Greathouse IV, Apr 30 2013
A000265(a(n)) is a prime. - Juri-Stepan Gerasimov, Aug 16 2016
Sum_{n>=1} 1/a(n)^s = (2^s*P(s) - 1)/(2^s - 1), for s > 1, where P is the prime zeta function. - Amiram Eldar, Dec 19 2020
Extensions
Edited by N. J. A. Sloane at the suggestion of Zak Seidov, Sep 15 2007
Comments