cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A038593 Differences between positive cubes in 1, 2 or 3 ways: union of A014439, A014440 and A014441.

Original entry on oeis.org

7, 19, 26, 37, 56, 61, 63, 91, 98, 117, 124, 127, 152, 169, 189, 208, 215, 217, 218, 271, 279, 296, 316, 331, 335, 342, 386, 387, 397, 448, 469, 485, 488, 504, 511, 513, 547, 602, 604, 631, 657, 665, 702, 721, 728, 784, 817, 819, 866, 875, 919, 936, 973, 988
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    N:= 1000: # to get all terms <= N
    X:= floor(sqrt(N/3)):
    V:= Vector(N):
    for x from 2 to X do
      if x^3 > N then
         y0:= iroot(x^3-N,3);
         if x^3 - y0^3 > N then y0:= y0+1 fi;
      else y0:= 1 fi;
      for y from y0 to x-1 do
         V[x^3 - y^3] := V[x^3 - y^3]+1
      od
    od:
    select(t -> V[t] <= 3 and V[t]>=1, [$1..N]); # Robert Israel, Dec 10 2015
  • Mathematica
    r = 988; p = 3; Sort@Drop[Flatten@Select[Tally@Reap[Do[n = i^p - j^p; If[n <= r, Sow[n]], {i, Ceiling[(r/p)^(1/(p - 1))]}, {j, i}]][[2, 1]], 0 < #[[2]] < 4 &], {2, -1, 2}] (* Arkadiusz Wesolowski, Dec 10 2015 *)

Extensions

Corrected by Don Reble, Nov 19 2006

A038597 Numbers whose square is a difference between 2 positive cubes in at least one way.

Original entry on oeis.org

13, 28, 49, 104, 147, 181, 189, 224, 351, 361, 388, 392, 507, 549, 588, 676, 756, 832, 1029, 1176, 1323, 1369, 1425, 1448, 1512, 1625, 1792, 1862, 1911, 1922, 2299, 2355, 2521, 2808, 2883, 2888, 3104, 3136, 3185, 3216, 3500, 3721, 3969, 4056, 4103, 4332
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • PARI
    is(n)=my(N=n^2); for(k=sqrtnint(N,3)+1,(sqrtint(12*N-3)+3)\6, if(ispower(N-k^3,3), return(1))); 0 \\ Charles R Greathouse IV, Oct 28 2013
    
  • PARI
    mm=820188; cb=vector(mm); for(i=1, mm, cb[i]=i^3); mb=1420608; v=vector(mb); mx=mb^2; for(i=1, mm-1, for(j=i+1, mm, d=cb[j]-cb[i]; if(d<=mx, if(issquare(d, &r), v[r]=1), next(2)))); c=0; for(n=1, mb, if(v[n]==1, c++; write("b038597.txt", c " " n))) \\ Donovan Johnson, Oct 31 2013

Formula

a(n) = sqrt(A038596(n)). - M. F. Hasler, Oct 05 2013

Extensions

More terms from Jud McCranie

A228946 Numbers m such that m^3 - k^3 is a square for some k < m, k > 0.

Original entry on oeis.org

8, 10, 14, 28, 32, 33, 40, 56, 57, 65, 71, 72, 74, 78, 90, 105, 112, 114, 126, 128, 130, 132, 140, 148, 154, 155, 160, 176, 193, 200, 217, 218, 224, 228, 250, 252, 260, 266, 273, 280, 284, 288, 296, 297, 305, 312, 329, 336, 344, 349, 350, 360, 392
Offset: 1

Views

Author

M. F. Hasler, Oct 05 2013

Keywords

Comments

See A038596 = A038597^2 for the possible values of n^3-k^3.

Crossrefs

Programs

Formula

a(n) = A066648(n)^(1/3). - Amiram Eldar, Mar 20 2025

A230716 Numbers whose square is both a sum and a difference of two positive cubes.

Original entry on oeis.org

588, 1029, 1323, 2888, 4704, 8232, 8281, 9747, 10584, 15876, 23104, 27783, 33124, 35113, 35721, 37632, 47089, 65856, 66248, 73500, 74529, 77976, 84672, 103544, 114075, 127008, 127896, 128625, 165375, 184832, 201684, 222264, 223587, 263169, 264992, 280904
Offset: 1

Views

Author

Jonathan Sondow, Oct 28 2013

Keywords

Comments

Intersection of A050801 and A038597.
a(5)-a(24) are computed from Donovan Johnson's extension of A230717.

Examples

			588^2 = 14^3 + 70^3 = 71^3 - 23^3.
		

References

  • Ian Stewart, "Game, Set and Math", Dover, 2007, Chapter 8 'Close Encounters of the Fermat Kind', pp. 107-124.

Crossrefs

Formula

a(n)^2 = a^3 + b^3 = c^3 - d^3 for some natural numbers a, b, c, d.
a(n) = sqrt(A230717(n)).

A230717 Squares that are both a sum and a difference of two positive cubes.

Original entry on oeis.org

345744, 1058841, 1750329, 8340544, 22127616, 67765824, 68574961, 95004009, 112021056, 252047376, 533794816, 771895089, 1097199376, 1232922769, 1275989841, 1416167424, 2217373921, 4337012736, 4388797504, 5402250000, 5554571841, 6080256576, 7169347584, 10721359936
Offset: 1

Views

Author

Jonathan Sondow, Oct 28 2013

Keywords

Comments

Intersection of A050802 and A038596.
Square terms of sequence A225908. - Michel Marcus, Apr 22 2016

Examples

			345744 = 588^2 = 14^3 + 70^3 = 71^3 - 23^3.
		

References

  • Ian Stewart, "Game, Set and Math", Dover, 2007, Chapter 8 'Close Encounters of the Fermat Kind', pp. 107-124.

Crossrefs

Programs

  • PARI
    isA038596(n)=for(k=sqrtnint(n,3)+1,(sqrtint(12*n-3)+3)\6,if(ispower(n-k^3,3), return(issquare(n)))); 0
    isA050802(n)=for(k=sqrtnint((n+1)\2, 3), sqrtnint(n-1, 3), if(ispower(n-k^3, 3), return(issquare(n)))); 0
    is(n)=isA038596(n) && isA050802(n) \\ Charles R Greathouse IV, Oct 28 2013

Formula

a(n) = k^2 = a^3 + b^3 = c^3 - d^3 for some natural numbers k, a, b, c, d.
a(n) = A230716(n)^2.

Extensions

a(5)-a(24) from Donovan Johnson, Oct 28 2013

A051393 Numbers whose square is expressible as the difference of positive cubes in more than one way.

Original entry on oeis.org

36963, 66248, 157339, 262808, 295704, 519841, 529984, 793117, 990584, 998001, 1258712, 1271403, 1291836, 1788696, 2102464, 2365632, 2688728, 3294486, 3756536, 4158728, 4239872, 4248153, 4620375, 5532247, 5738904, 5938947, 6344936, 6562101, 7095816, 7924672
Offset: 1

Views

Author

Keywords

Examples

			36963^2 = 1110^3-111^3 = 1332^3-999^3.
		

Crossrefs

Programs

  • PARI
    mm=577350; cb=vector(mm); for(i=1, mm, cb[i]=i^3); v=vector(10^6); n=vector(10); c=0; mx=10^12; for(i=1, mm-1, for(j=i+1, mm, s=cb[j]-cb[i]; if(s<=mx, if(issquare(s,&r), v[r]++; if(v[r]==2, c++; n[c]=r)), next(2)))); n=vecsort(n); for(i=1, c, print1(n[i] ", ")) \\ Donovan Johnson, Oct 29 2013

Extensions

Corrected and extended by Ray Chandler, Dec 01 2008
Offset corrected by Donovan Johnson, Oct 29 2013

A129965 Triangular numbers that are the difference of nonnegative cubes.

Original entry on oeis.org

0, 1, 91, 4095, 5886, 7875, 8128, 8911, 9045, 17955, 21736, 23653, 47278, 93961, 115921, 130816, 184528, 259560, 379756, 488566, 575128, 658378, 758296, 810901, 873181, 885115, 1060696, 1155960, 1358776, 1385280, 1997001, 2616328, 2685403
Offset: 1

Views

Author

Peter Pein (petsie(AT)dordos.net), Jun 13 2007, Jun 14 2007

Keywords

Examples

			A000217(13) = Sum_{k=1..13} k = 91 = 216 - 125 = 6^3 - 5^3, so 91 is in the sequence. - _Peter Munn_, Dec 05 2022
		

Crossrefs

Intersection of A000217 and A152043.

Programs

  • Maple
    M:= 10^7: # for terms <= M
    S:= {0}:
    for x from 1 while 3*x^2 - 3*x + 1 < M do
       if x^3 < M then Y:= 0 else Y:= ceil(x^3-M) fi;
      S:= S union select(t -> issqr(1+8*t),{seq(x^3 - y^3, y = Y .. x-1)});
    od:
    sort(convert(S,list)); # Robert Israel, Dec 05 2023
  • Mathematica
    With[{n = 5000}, Intersection[(#1*((#1 + 1)/2) & ) /@ Range[0, n], Flatten[Outer[ #1^3 - #2^3 &, Range[n], Range[0, n - 1]]]]]
Showing 1-7 of 7 results.